Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
TV & Film
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/92/f0/ad/92f0adf4-2b10-a63c-bc79-1889b710b139/mza_6601485165628379978.jpg/600x600bb.jpg
AI: post transformers
mcgrof
316 episodes
2 days ago
The transformer architecture revolutionized the world of Neural Networks. It was a springboard for what we know today as modern artificial intelligence. This podcast focuses on modern state of the art research paper reviews starting from the transformer and on.
Show more...
Technology
RSS
All content for AI: post transformers is the property of mcgrof and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
The transformer architecture revolutionized the world of Neural Networks. It was a springboard for what we know today as modern artificial intelligence. This podcast focuses on modern state of the art research paper reviews starting from the transformer and on.
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/44199026/44199026-1754490757264-4f84f1d34e94a.jpg
LLM-AutoDiff: Auto-Differentiate Any LLM Workflow
AI: post transformers
14 minutes 26 seconds
1 week ago
LLM-AutoDiff: Auto-Differentiate Any LLM Workflow

The January 30, 2025 paper introduces **LLM-AutoDiff**, a novel framework for **Automatic Prompt Engineering (APE)** that allows for the optimization of complex Large Language Model (LLM) workflows. This framework models an entire LLM application—including multiple LLM calls, functional components like retrievers, and cyclical operations—as a **directed, auto-differentiable graph**. By treating textual inputs as trainable parameters, LLM-AutoDiff uses a separate "backward engine" LLM to generate **textual gradients** (feedback) that guide an optimizer LLM to revise prompts, effectively automating the manual and labor-intensive process of prompt engineering. The paper details several technical advances, such as **pass-through gradients for functional nodes** and **time-sequential gradients for cyclic structures**, to ensure accurate error attribution across multi-component pipelines, ultimately demonstrating improved accuracy and efficiency over existing textual gradient and few-shot baselines.


Source:

January 30, 2025

LLM-AutoDiff: Auto-Differentiate Any LLM Workflow

https://arxiv.org/pdf/2501.16673

AI: post transformers
The transformer architecture revolutionized the world of Neural Networks. It was a springboard for what we know today as modern artificial intelligence. This podcast focuses on modern state of the art research paper reviews starting from the transformer and on.