In Episode 170 of the AIAW Podcast, we’re joined by Jim Dowling, CEO of Hopsworks, co-creator of featurestore.org, and author of the upcoming O’Reilly book Building Machine Learning Systems with a Feature Store. Known as "Mr. Feature Store," Jim walks us through the evolution of AI infrastructure. From traditional batch learning to real-time, agentic workflows powered by vector databases, RAG, and LLMs. We discuss how feature stores serve as the memory layer of AI agents, enabling contextual ...
All content for AIAW Podcast is the property of Hyperight and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In Episode 170 of the AIAW Podcast, we’re joined by Jim Dowling, CEO of Hopsworks, co-creator of featurestore.org, and author of the upcoming O’Reilly book Building Machine Learning Systems with a Feature Store. Known as "Mr. Feature Store," Jim walks us through the evolution of AI infrastructure. From traditional batch learning to real-time, agentic workflows powered by vector databases, RAG, and LLMs. We discuss how feature stores serve as the memory layer of AI agents, enabling contextual ...
In Episode 164 of the AIAW Podcast, we’re joined by Mathias Sundin. He is a former Member of Parliament and Co-Founder of Warp News. He is joining us for a wide-ranging conversation on his upcoming book, The Fifth Acceleration and the societal transformations AI may unleash. We explore why Sweden is falling behind in AI adoption and literacy, the bold idea of free AI access for all citizens, and how public discourse around AI, including political controversies, shapes national momentum. Mathi...
AIAW Podcast
In Episode 170 of the AIAW Podcast, we’re joined by Jim Dowling, CEO of Hopsworks, co-creator of featurestore.org, and author of the upcoming O’Reilly book Building Machine Learning Systems with a Feature Store. Known as "Mr. Feature Store," Jim walks us through the evolution of AI infrastructure. From traditional batch learning to real-time, agentic workflows powered by vector databases, RAG, and LLMs. We discuss how feature stores serve as the memory layer of AI agents, enabling contextual ...