Home
Categories
EXPLORE
Society & Culture
Comedy
True Crime
Technology
Education
Business
Music
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/47/fb/c6/47fbc67a-204d-7213-cca7-4baa815a6464/mza_5491145910865118031.jpg/600x600bb.jpg
Cellular and Molecular Biology for Research
Ahmadreza Gharaeian
26 episodes
5 days ago
Cellular and Molecular Biology for Research is the podcast where complex textbooks stop gathering dust and start making sense. Each episode breaks down the dense chapters of cellular and molecular biology—DNA, signaling pathways, protein folding, experimental techniques—into clear explanations for students, early-career researchers, or anyone who wants to actually understand the science instead of just memorizing it. Think of it as your study buddy who reads the heavy stuff, translates the jargon, and hands you the key concepts (with a little less pain and a lot more clarity).
Show more...
Medicine
Health & Fitness
RSS
All content for Cellular and Molecular Biology for Research is the property of Ahmadreza Gharaeian and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Cellular and Molecular Biology for Research is the podcast where complex textbooks stop gathering dust and start making sense. Each episode breaks down the dense chapters of cellular and molecular biology—DNA, signaling pathways, protein folding, experimental techniques—into clear explanations for students, early-career researchers, or anyone who wants to actually understand the science instead of just memorizing it. Think of it as your study buddy who reads the heavy stuff, translates the jargon, and hands you the key concepts (with a little less pain and a lot more clarity).
Show more...
Medicine
Health & Fitness
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/44291602/44291602-1756726352881-098bc66ee93a4.jpg
DNA–Protein Interactions in Bacteria(CMB part 7)
Cellular and Molecular Biology for Research
58 minutes 13 seconds
1 day ago
DNA–Protein Interactions in Bacteria(CMB part 7)

The repressors of the λ-like phages possess recognition helices that fit sideways into the major groove of the operator DNA. Specific amino acids on the DNA-facing side of the recognition helix establish precise contacts with bases in the operator, and these interactions determine the specificity of the protein-DNA binding. Altering these amino acids can modify the specificity of the repressor. Both the λ repressor and the Cro protein exhibit affinity for the same operators, but their microspecificities for OR1 or OR3 are defined by interactions between distinct amino acids in the recognition helices of the two proteins and the base pairs in the respective operators.


The cocrystal structure of a λ repressor fragment bound to an operator fragment provides detailed insight into the protein-DNA interactions. The most critical contacts occur in the major groove, where amino acids on the recognition helix, along with other amino acids, form hydrogen bonds with the edges of DNA bases and the DNA backbone. Some of these hydrogen bonds are reinforced by hydrogen bond networks involving two amino acids and multiple sites on the DNA. The structural data derived from the cocrystal closely align with prior biochemical and genetic findings.


X-ray crystallography of a phage 434 repressor fragment/operator-fragment complex reveals probable hydrogen bonding between amino acid residues in the recognition helix and base pairs in the repressor. It also indicates a potential van der Waals interaction between an amino acid in the recognition helix and a base in the operator. The DNA in the deviates significantly from its typical regular shape, bending slightly to facilitate the necessary base/amino acid contacts. Additionally, the central region of the helix, the two half-sites, is wound more tightly, while the outer regions are wound more loosely than usual. These structural deviations are supported by the base sequence of the operator.


Cellular and Molecular Biology for Research
Cellular and Molecular Biology for Research is the podcast where complex textbooks stop gathering dust and start making sense. Each episode breaks down the dense chapters of cellular and molecular biology—DNA, signaling pathways, protein folding, experimental techniques—into clear explanations for students, early-career researchers, or anyone who wants to actually understand the science instead of just memorizing it. Think of it as your study buddy who reads the heavy stuff, translates the jargon, and hands you the key concepts (with a little less pain and a lot more clarity).