Home
Categories
EXPLORE
True Crime
Comedy
Business
Society & Culture
Sports
History
Fiction
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/47/fb/c6/47fbc67a-204d-7213-cca7-4baa815a6464/mza_5491145910865118031.jpg/600x600bb.jpg
Cellular and Molecular Biology for Research
Ahmadreza Gharaeian
37 episodes
4 days ago
Cellular and Molecular Biology for Research is the podcast where complex textbooks stop gathering dust and start making sense. Each episode breaks down the dense chapters of cellular and molecular biology—DNA, signaling pathways, protein folding, experimental techniques—into clear explanations for students, early-career researchers, or anyone who wants to actually understand the science instead of just memorizing it. Think of it as your study buddy who reads the heavy stuff, translates the jargon, and hands you the key concepts (with a little less pain and a lot more clarity).
Show more...
Medicine
Health & Fitness
RSS
All content for Cellular and Molecular Biology for Research is the property of Ahmadreza Gharaeian and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Cellular and Molecular Biology for Research is the podcast where complex textbooks stop gathering dust and start making sense. Each episode breaks down the dense chapters of cellular and molecular biology—DNA, signaling pathways, protein folding, experimental techniques—into clear explanations for students, early-career researchers, or anyone who wants to actually understand the science instead of just memorizing it. Think of it as your study buddy who reads the heavy stuff, translates the jargon, and hands you the key concepts (with a little less pain and a lot more clarity).
Show more...
Medicine
Health & Fitness
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/44291602/44291602-1757250220096-e70942555dcbc.jpg
RNA Processing II: Capping and Polyadenylation (CMB part 13)
Cellular and Molecular Biology for Research
1 hour 26 minutes 8 seconds
3 weeks ago
RNA Processing II: Capping and Polyadenylation (CMB part 13)

Capping occurs in several steps: initially, RNA triphosphatase removes the terminal phosphate from pre-mRNA. Subsequently, guanylyl transferase adds the capping GMP derived from GTP, followed by two methyl transferases that methylate the N7 position of the capping guanosine and the 2'-O-methyl group of the penultimate nucleotide. These processes take place early in transcription, before the RNA chain exceeds 30 nucleotides in length. The cap plays a crucial role in ensuring proper splicing of some pre-mRNAs, facilitating the transport of mature mRNAs out of the nucleus, protecting mRNA from degradation, and enhancing its translatability.


Most eukaryotic mRNAs and their precursors possess a poly(A) tail approximately 250 nucleotides long at their 3'-ends, added post-transcriptionally by poly(A) polymerase. The poly(A) tail increases both the stability and translatability of the mRNA, with the relative importance of these effects differing across systems.


Transcription of eukaryotic genes beyond the polyadenylation site, after which the transcript is cleaved and polyadenylated at the newly formed 3'-end. An efficient mammalian polyadenylation signal includes an AAUAAA motif about 20 nucleotides upstream of the polyadenylation site, followed 23–24 base pairs later by a GU-rich sequence and then a U-rich motif. Variations in these sequences influence polyadenylation efficiency, with plant signals allowing more flexibility around the AAUAAA motif than animal signals, and yeast signals rarely containing the AAUAAA motif.


Polyadenylation involves both cleavage of the pre-mRNA and the addition of the poly(A) tail at the cleavage site. The cleavage process requires multiple proteins, including CPSF, CstF, CF I, CF II, poly(A) polymerase, and the CTD of the largest subunit of RNA polymerase II. Among these, CPSF-73 is responsible for cleaving the pre-mRNA.


Cellular and Molecular Biology for Research
Cellular and Molecular Biology for Research is the podcast where complex textbooks stop gathering dust and start making sense. Each episode breaks down the dense chapters of cellular and molecular biology—DNA, signaling pathways, protein folding, experimental techniques—into clear explanations for students, early-career researchers, or anyone who wants to actually understand the science instead of just memorizing it. Think of it as your study buddy who reads the heavy stuff, translates the jargon, and hands you the key concepts (with a little less pain and a lot more clarity).