Home
Categories
EXPLORE
Comedy
Society & Culture
News
Sports
History
Business
Arts
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/e8/92/27/e8922762-bbad-63d7-dfa6-1be8cc003235/mza_4379133341671027619.png/600x600bb.jpg
Center for Advanced Studies (CAS) Research Focus CRISPR/Cas
Center for Advanced Studies (CAS)
6 episodes
5 months ago
Emmanuelle Charpentier and Jennifer Doudna received the Nobel Prize for Chemistry in 2020 for their discovery in 2011 that CRISPR/Cas can be used to cut DNA at specific sites – a discovery that revolutionized research, especially in the fields of medicine and plant breeding. With this method, it is possible to make specific cuts and modifications to DNA with minimal cost and unparalleled efficiency (Genome Editing). Due to its simple handling, CRISPR/Cas-assisted gene editing is a technology that is further developing very quickly. Alongside other improvements, there are now methods for introducing CRISPR tools directly into plant or animal cells – without the detour via a corresponding gene construct. In essence: we are now in a position not only to read genomes, but also essentially to rewrite them at will. However, this new method and its further development also raises a number of legal, social, ethical and economic questions, for example regarding regulation or the establishment of an international moratorium on all forms of germ line intervention in humans. Plant breeding is concerned with the question of whether genome editing leads to plants being regarded as genetically modified organisms even though their genomes look "nature-identical". At the same time, the extent to which genome editing can contribute to the sustainable production and distribution of safe food remains highly debated. Another aspect is the problem of patents: who is entitled to which patents for the CRISPR Cas9 technology? And of course there is the question of how best to communicate this technology – its potentials and also its dangers – to a broader audience and initiate a constructive dialog between scientists and the general public.
Show more...
Science
RSS
All content for Center for Advanced Studies (CAS) Research Focus CRISPR/Cas is the property of Center for Advanced Studies (CAS) and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Emmanuelle Charpentier and Jennifer Doudna received the Nobel Prize for Chemistry in 2020 for their discovery in 2011 that CRISPR/Cas can be used to cut DNA at specific sites – a discovery that revolutionized research, especially in the fields of medicine and plant breeding. With this method, it is possible to make specific cuts and modifications to DNA with minimal cost and unparalleled efficiency (Genome Editing). Due to its simple handling, CRISPR/Cas-assisted gene editing is a technology that is further developing very quickly. Alongside other improvements, there are now methods for introducing CRISPR tools directly into plant or animal cells – without the detour via a corresponding gene construct. In essence: we are now in a position not only to read genomes, but also essentially to rewrite them at will. However, this new method and its further development also raises a number of legal, social, ethical and economic questions, for example regarding regulation or the establishment of an international moratorium on all forms of germ line intervention in humans. Plant breeding is concerned with the question of whether genome editing leads to plants being regarded as genetically modified organisms even though their genomes look "nature-identical". At the same time, the extent to which genome editing can contribute to the sustainable production and distribution of safe food remains highly debated. Another aspect is the problem of patents: who is entitled to which patents for the CRISPR Cas9 technology? And of course there is the question of how best to communicate this technology – its potentials and also its dangers – to a broader audience and initiate a constructive dialog between scientists and the general public.
Show more...
Science
https://cast.itunes.uni-muenchen.de/itunesu/icons/cas-crispr_cas-v2.png
Human Engineering. Medical and Ethical Aspects and Prospects
Center for Advanced Studies (CAS) Research Focus CRISPR/Cas
1 hour 35 minutes 57 seconds
3 years ago
Human Engineering. Medical and Ethical Aspects and Prospects
The lecture series reflects on the consequences of the revolutionary gene editing technology CRISPR/Cas in the fields of natural sciences and medicine, as well as its societal significance. The top-class speakers of the series include Kay Davies (Oxford), Kevin M. Esvelt (MIT), Caroline Gutjahr (TUM), Henry T. Greely (Stanford), Dirk Inzé (Gent), Greg Newby (Broad Institute), Kai P. Purnhagen (Bayreuth), Pamela C. Ronald (UC Davis) and Jörg Vogel (HIRI/Würzburg). The lecture series is part of the CAS Research Focus "CRISPR/Cas" . The spokesperson of this Research Focus is Prof. Dr. Eckhard Wolf (LMU).
Center for Advanced Studies (CAS) Research Focus CRISPR/Cas
Emmanuelle Charpentier and Jennifer Doudna received the Nobel Prize for Chemistry in 2020 for their discovery in 2011 that CRISPR/Cas can be used to cut DNA at specific sites – a discovery that revolutionized research, especially in the fields of medicine and plant breeding. With this method, it is possible to make specific cuts and modifications to DNA with minimal cost and unparalleled efficiency (Genome Editing). Due to its simple handling, CRISPR/Cas-assisted gene editing is a technology that is further developing very quickly. Alongside other improvements, there are now methods for introducing CRISPR tools directly into plant or animal cells – without the detour via a corresponding gene construct. In essence: we are now in a position not only to read genomes, but also essentially to rewrite them at will. However, this new method and its further development also raises a number of legal, social, ethical and economic questions, for example regarding regulation or the establishment of an international moratorium on all forms of germ line intervention in humans. Plant breeding is concerned with the question of whether genome editing leads to plants being regarded as genetically modified organisms even though their genomes look "nature-identical". At the same time, the extent to which genome editing can contribute to the sustainable production and distribution of safe food remains highly debated. Another aspect is the problem of patents: who is entitled to which patents for the CRISPR Cas9 technology? And of course there is the question of how best to communicate this technology – its potentials and also its dangers – to a broader audience and initiate a constructive dialog between scientists and the general public.