Home
Categories
EXPLORE
Society & Culture
Comedy
True Crime
Music
Education
Religion & Spirituality
Business
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/25/08/2d/25082d65-d8e0-ffd1-2a21-f40bd1d33ce4/mza_16798281198718059059.jpg/600x600bb.jpg
Daily Paper Cast
Jingwen Liang, Gengyu Wang
1380 episodes
1 day ago
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Show more...
Science
Technology
RSS
All content for Daily Paper Cast is the property of Jingwen Liang, Gengyu Wang and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art
Show more...
Science
Technology
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/25/08/2d/25082d65-d8e0-ffd1-2a21-f40bd1d33ce4/mza_16798281198718059059.jpg/600x600bb.jpg
Virtual Width Networks
Daily Paper Cast
22 minutes
2 days ago
Virtual Width Networks

🤗 Upvotes: 23 | cs.LG, cs.AI

Authors:
Seed, Baisheng Li, Banggu Wu, Bole Ma, Bowen Xiao, Chaoyi Zhang, Cheng Li, Chengyi Wang, Chenyin Xu, Chi Zhang, Chong Hu, Daoguang Zan, Defa Zhu, Dongyu Xu, Du Li, Faming Wu, Fan Xia, Ge Zhang, Guang Shi, Haobin Chen, Hongyu Zhu, Hongzhi Huang, Huan Zhou, Huanzhang Dou, Jianhui Duan, Jianqiao Lu, Jianyu Jiang, Jiayi Xu, Jiecao Chen, Jin Chen, Jin Ma, Jing Su, Jingji Chen, Jun Wang, Jun Yuan, Juncai Liu, Jundong Zhou, Kai Hua, Kai Shen, Kai Xiang, Kaiyuan Chen, Kang Liu, Ke Shen, Liang Xiang, Lin Yan, Lishu Luo, Mengyao Zhang, Ming Ding, Mofan Zhang, Nianning Liang, Peng Li, Penghao Huang, Pengpeng Mu, Qi Huang, Qianli Ma, Qiyang Min, Qiying Yu, Renming Pang, Ru Zhang, Shen Yan, Shen Yan, Shixiong Zhao, Shuaishuai Cao, Shuang Wu, Siyan Chen, Siyu Li, Siyuan Qiao, Tao Sun, Tian Xin, Tiantian Fan, Ting Huang, Ting-Han Fan, Wei Jia, Wenqiang Zhang, Wenxuan Liu, Xiangzhong Wu, Xiaochen Zuo, Xiaoying Jia, Ximing Yang, Xin Liu, Xin Yu, Xingyan Bin, Xintong Hao, Xiongcai Luo, Xujing Li, Xun Zhou, Yanghua Peng, Yangrui Chen, Yi Lin, Yichong Leng, Yinghao Li, Yingshuan Song, Yiyuan Ma, Yong Shan, Yongan Xiang, Yonghui Wu, Yongtao Zhang, Yongzhen Yao, Yu Bao, Yuehang Yang, Yufeng Yuan, Yunshui Li, Yuqiao Xian, Yutao Zeng, Yuxuan Wang, Zehua Hong, Zehua Wang, Zengzhi Wang, Zeyu Yang, Zhengqiang Yin, Zhenyi Lu, Zhexi Zhang, Zhi Chen, Zhi Zhang, Zhiqi Lin, Zihao Huang, Zilin Xu, Ziyun Wei, Zuo Wang

Title:
Virtual Width Networks

Arxiv:
http://arxiv.org/abs/2511.11238v1

Abstract:
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.

Daily Paper Cast
We update every weekday to discuss highest-voted papers from Huggingface Daily Paper (https://huggingface.co/papers). Both the podcast scripts and audio are generated by AI. Feedback and suggestions are welcome! Email us: dailypapercast.ai@gmail.com Creator: Jingwen Liang, 3D ML, https://www.linkedin.com/in/jingwen-liang/ Gengyu Wang, LLM ML, http://wanggengyu.com Listen on: Spotify: https://open.spotify.com/show/21nrhmdaA8qoBiH8q03NXL Apple Podcast: https://podcasts.apple.com/us/podcast/daily-paper-cast/id1777620236 Cover Image by Kawen Kuang https://kawen.art