Santosh Vempala, Frederick Storey II Chair of Computing and Distinguished Professor in the School of Computer Science at Georgia Tech, explains his paper co-authored by OpenAI's Adam Tauman Kalai, Ofir Nachum, and Edwin Zhang. Read the paper: Sign up for future AI research paper readings and author office hours. See LLM hallucination examples here for context. Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
All content for Deep Papers is the property of Arize AI and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Santosh Vempala, Frederick Storey II Chair of Computing and Distinguished Professor in the School of Computer Science at Georgia Tech, explains his paper co-authored by OpenAI's Adam Tauman Kalai, Ofir Nachum, and Edwin Zhang. Read the paper: Sign up for future AI research paper readings and author office hours. See LLM hallucination examples here for context. Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.
Accurate KV Cache Quantization with Outlier Tokens Tracing
Deep Papers
25 minutes
4 months ago
Accurate KV Cache Quantization with Outlier Tokens Tracing
Join us as we discuss Accurate KV Cache Quantization with Outlier Tokens Tracing, a deep dive into improving the efficiency of LLM inference. The authors enhance KV Cache quantization, a technique for reducing memory and compute costs during inference, by introducing a method to identify and exclude outlier tokens that hurt quantization accuracy, striking a better balance between efficiency and performance. Paper: https://arxiv.org/abs/2505.10938 Slides: https://bit.ly/45wolpr Join us for Ar...
Deep Papers
Santosh Vempala, Frederick Storey II Chair of Computing and Distinguished Professor in the School of Computer Science at Georgia Tech, explains his paper co-authored by OpenAI's Adam Tauman Kalai, Ofir Nachum, and Edwin Zhang. Read the paper: Sign up for future AI research paper readings and author office hours. See LLM hallucination examples here for context. Learn more about AI observability and evaluation, join the Arize AI Slack community or get the latest on LinkedIn and X.