We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...
All content for Deep Papers is the property of Arize AI and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...
Atropos Health’s Arjun Mukerji, PhD, Explains RWESummary: A Framework and Test for Choosing LLMs to Summarize Real-World Evidence (RWE) Studies
Deep Papers
26 minutes
2 months ago
Atropos Health’s Arjun Mukerji, PhD, Explains RWESummary: A Framework and Test for Choosing LLMs to Summarize Real-World Evidence (RWE) Studies
Large language models are increasingly used to turn complex study output into plain-English summaries. But how do we know which models are safest and most reliable for healthcare? In this most recent community AI research paper reading, Arjun Mukerji, PhD – Staff Data Scientist at Atropos Health – walks us through RWESummary, a new benchmark designed to evaluate LLMs on summarizing real-world evidence from structured study output — an important but often under-tested scenario compared t...
Deep Papers
We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...