We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...
All content for Deep Papers is the property of Arize AI and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...
In this week's episode, we talk about Elastic Reasoning, a novel framework designed to enhance the efficiency and scalability of large reasoning models by explicitly separating the reasoning process into two distinct phases: thinking and solution. This separation allows for independent allocation of computational budgets, addressing challenges related to uncontrolled output lengths in real-world deployments with strict resource constraints. Our discussion explores how Elastic Reasoning ...
Deep Papers
We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...