We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...
All content for Deep Papers is the property of Arize AI and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...
In this AI research paper reading, we dive into "A Watermark for Large Language Models" with the paper's author John Kirchenbauer. This paper is a timely exploration of techniques for embedding invisible but detectable signals in AI-generated text. These watermarking strategies aim to help mitigate misuse of large language models by making machine-generated content distinguishable from human writing, without sacrificing text quality or requiring access to the model’s internals. Learn mo...
Deep Papers
We dive into the latest paper from Google and a team of academic researchers: "TUMIX: Multi-Agent Test-Time Scaling with Tool-Use Mixture." Hear from one of the paper's authors — Yongchao Chen, Research Scientist — walks through the research and its implications. The paper proposes Tool-Use Mixture (TUMIX), an ensemble framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer paths. Agents in TUMIX iteratively share and refine responses ba...