A lecture exploring alternatives to using labeled training data. Labeled training data is often scarce, unavailable, or can be very costly to obtain. To circumvent this problem, there is a growing interest in developing methods that can exploit sources of information other than labeled data, such as weak-supervision and zero-shot learning. While these techniques obtained impressive accuracy in practice, both for vision and language domains, they come with no theoretical characterization of their accuracy. In a sequence of recent works, we develop a rigorous mathematical framework for constructing and analyzing algorithms that combine multiple sources of related data to solve a new learning task. Our learning algorithms provably converge to models that have minimum empirical risk with respect to an adversarial choice over feasible labelings for a set of unlabeled data, where the feasibility of a labeling is computed through constraints defined by estimated statistics of the sources. Notably, these methods do not require the related sources to have the same labeling space as the multiclass classification task. We demonstrate the effectiveness of our approach with experimentations on various image classification tasks. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
All content for Department of Statistics is the property of Oxford University and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
A lecture exploring alternatives to using labeled training data. Labeled training data is often scarce, unavailable, or can be very costly to obtain. To circumvent this problem, there is a growing interest in developing methods that can exploit sources of information other than labeled data, such as weak-supervision and zero-shot learning. While these techniques obtained impressive accuracy in practice, both for vision and language domains, they come with no theoretical characterization of their accuracy. In a sequence of recent works, we develop a rigorous mathematical framework for constructing and analyzing algorithms that combine multiple sources of related data to solve a new learning task. Our learning algorithms provably converge to models that have minimum empirical risk with respect to an adversarial choice over feasible labelings for a set of unlabeled data, where the feasibility of a labeling is computed through constraints defined by estimated statistics of the sources. Notably, these methods do not require the related sources to have the same labeling space as the multiclass classification task. We demonstrate the effectiveness of our approach with experimentations on various image classification tasks. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Victims of Algorithmic Violence: An Introduction to AI Ethics and Human-AI Interaction
Department of Statistics
50 minutes
3 years ago
Victims of Algorithmic Violence: An Introduction to AI Ethics and Human-AI Interaction
A high-level overview of key areas of AI ethics and not-ethics, exploring the challenges of algorithmic decision-making, kinds of bias, and interpretability, linking these issues to problems of human-system interaction. Much attention is now being focused on AI Ethics and Safety, with the EU AI Act and other emerging legislation being proposed to identify and curb "AI risks" worldwide. Are such ethical concerns unique to AI systems - and not just digital systems in general?
Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/
Department of Statistics
A lecture exploring alternatives to using labeled training data. Labeled training data is often scarce, unavailable, or can be very costly to obtain. To circumvent this problem, there is a growing interest in developing methods that can exploit sources of information other than labeled data, such as weak-supervision and zero-shot learning. While these techniques obtained impressive accuracy in practice, both for vision and language domains, they come with no theoretical characterization of their accuracy. In a sequence of recent works, we develop a rigorous mathematical framework for constructing and analyzing algorithms that combine multiple sources of related data to solve a new learning task. Our learning algorithms provably converge to models that have minimum empirical risk with respect to an adversarial choice over feasible labelings for a set of unlabeled data, where the feasibility of a labeling is computed through constraints defined by estimated statistics of the sources. Notably, these methods do not require the related sources to have the same labeling space as the multiclass classification task. We demonstrate the effectiveness of our approach with experimentations on various image classification tasks. Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/