Fermilab’s Muon g-2 collaboration has given its final word on the magnetic moment of the muon. The new measurement agrees closely with a significantly revised Standard Model (SM) prediction. Though the experimental measurement will likely now remain stable for several years, theorists expect to make rapid progress to reduce uncertainties and resolve tensions underlying the SM value. One of the most intriguing anomalies in particle physics is therefore severely undermined, but not yet definitively resolved.
All content for Early Morning Coffee at CERN is the property of CERN and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Fermilab’s Muon g-2 collaboration has given its final word on the magnetic moment of the muon. The new measurement agrees closely with a significantly revised Standard Model (SM) prediction. Though the experimental measurement will likely now remain stable for several years, theorists expect to make rapid progress to reduce uncertainties and resolve tensions underlying the SM value. One of the most intriguing anomalies in particle physics is therefore severely undermined, but not yet definitively resolved.
From the birth of quantum mechanics 100 years ago to its latest tests in high-energy proton collisions, we explore how the weirdness of the quantum world continues to unfold—one quark pair at a time.
Early Morning Coffee at CERN
Fermilab’s Muon g-2 collaboration has given its final word on the magnetic moment of the muon. The new measurement agrees closely with a significantly revised Standard Model (SM) prediction. Though the experimental measurement will likely now remain stable for several years, theorists expect to make rapid progress to reduce uncertainties and resolve tensions underlying the SM value. One of the most intriguing anomalies in particle physics is therefore severely undermined, but not yet definitively resolved.