Home
Categories
EXPLORE
True Crime
Comedy
Business
Sports
Society & Culture
History
Fiction
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/86/ef/63/86ef639b-62d6-8758-aa09-f61a60ec26ca/mza_2459041931596518318.jpg/600x600bb.jpg
Earthly Machine Learning
Amirpasha
44 episodes
2 days ago
“Earthly Machine Learning (EML)” offers AI-generated insights into cutting-edge machine learning research in weather and climate sciences. Powered by Google NotebookLM, each episode distils the essence of a standout paper, helping you decide if it’s worth a deeper look. Stay updated on the ML innovations shaping our understanding of Earth. It may contain hallucinations.
Show more...
Earth Sciences
Science
RSS
All content for Earthly Machine Learning is the property of Amirpasha and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
“Earthly Machine Learning (EML)” offers AI-generated insights into cutting-edge machine learning research in weather and climate sciences. Powered by Google NotebookLM, each episode distils the essence of a standout paper, helping you decide if it’s worth a deeper look. Stay updated on the ML innovations shaping our understanding of Earth. It may contain hallucinations.
Show more...
Earth Sciences
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_nologo/42762713/42762713-1735852906997-8ebdc8d7402cc.jpg
Differentiable and accelerated spherical harmonic and Wigner transforms
Earthly Machine Learning
13 minutes 2 seconds
3 weeks ago
Differentiable and accelerated spherical harmonic and Wigner transforms

Differentiable and accelerated spherical harmonic and Wigner transforms

Matthew A. Price, Jason D. McEwen

*Journal of Computational Physics (2024)*


* This work introduces novel algorithmic structures for the **accelerated and differentiable computation** of generalized Fourier transforms on the sphere ($S^2$) and the rotation group ($SO(3)$), specifically spherical harmonic and Wigner transforms.

* A key component is a **recursive algorithm for Wigner d-functions** designed to be stable to high harmonic degrees and extremely parallelizable, making the algorithms well-suited for high throughput computing on modern hardware accelerators such as GPUs.

* The transforms support efficient computation of gradients, which is critical for machine learning and other differentiable programming tasks, achieved through a **hybrid automatic and manual differentiation approach** to avoid the memory overhead associated with full automatic differentiation.

* Implemented in the open-source **S2FFT** software code (within the JAX differentiable programming framework), the algorithms support various sampling schemes, including equiangular samplings that admit exact spherical harmonic transforms.

* Benchmarking results demonstrate **up to a 400-fold acceleration** compared to alternative C codes, and the transforms exhibit **very close to optimal linear scaling** when distributed over multiple GPUs, yielding an unprecedented effective linear time complexity (O(L)) given sufficient computational resources.

Earthly Machine Learning
“Earthly Machine Learning (EML)” offers AI-generated insights into cutting-edge machine learning research in weather and climate sciences. Powered by Google NotebookLM, each episode distils the essence of a standout paper, helping you decide if it’s worth a deeper look. Stay updated on the ML innovations shaping our understanding of Earth. It may contain hallucinations.