In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...
All content for Forecasting Impact is the property of Forecasting Impact and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...
Eric Siegel, on Mastering the rare art of machine learning deployment
Forecasting Impact
48 minutes
1 year ago
Eric Siegel, on Mastering the rare art of machine learning deployment
In this episode of our podcast, we delve into the intricate world of machine learning (ML) deployment with Dr. Eric Siegel, author of the book AI Playbook, Mastering the Rare Art of Machine Learning Deployment. Dr. Siegel, once an avid advocate of ML, now approaches the field with a disciplined yet optimistic perspective. He shares invaluable insights on how businesses can effectively implement ML strategies. Our discussion revolves around a range of compelling topics, from the inspirin...
Forecasting Impact
In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...