In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...
All content for Forecasting Impact is the property of Forecasting Impact and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...
Forecasting the future of everything with Dr. Theodore Modis
Forecasting Impact
58 minutes
3 months ago
Forecasting the future of everything with Dr. Theodore Modis
In this episode of Forecasting Impact, host George Boretos speaks with Dr. Theodore Modis, acclaimed forecasting expert, strategist, and founder of Growth Dynamics, about the science behind forecasting and the natural laws that govern technological and societal change. From particle physics at CERN to pioneering the use of S-curves in business and technology forecasting, Dr. Modis reveals how principles from physics can reveal powerful insights into product life cycles, market disruptions, an...
Forecasting Impact
In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...