In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...
All content for Forecasting Impact is the property of Forecasting Impact and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...
Michele Trovero and Spiros Potamitis, on Software and Large Language Models in Forecasting
Forecasting Impact
56 minutes
1 year ago
Michele Trovero and Spiros Potamitis, on Software and Large Language Models in Forecasting
Our guests are Michele Trovero, leader of the Forecasting R&D group at SAS, and Spiros Potamitis, Data Scientist and Product Marketing Manager at SAS. We delved into the intriguing intersection of Language Model-based AI (LLMs) and forecasting software. We explored the openness of forecasting software providers to embrace LLMs and discussed the profound impact these models could have on the industry. Michele and Spiros shared insightful examples of LLM applications. They elaborated on ...
Forecasting Impact
In this episode of Forecasting Impact, hosts Mahdi Abolghasemi and Mariana Menchero speak with Marco Peixeiro, applied data scientist at Nixtla, about the growing importance of explainability in time series forecasting. Marco shares how his work bridges research and practice, from developing deep learning models in NeuralForecast to writing educational resources that make complex forecasting concepts accessible to all. We discuss how explainability builds trust in complex models, the role of ...