Home
Categories
EXPLORE
True Crime
Comedy
Business
Sports
Society & Culture
Health & Fitness
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts221/v4/dc/0a/bc/dc0abc1f-5882-609d-4b6d-883b81dcbb62/mza_13366896473463409062.jpg/600x600bb.jpg
Intellectually Curious
Mike Breault
1676 episodes
17 hours ago
We uncover how river networks are not random but self-organizing, guided by scale-invariant math. We'll explore Hack's Law and Horton’s laws, the bifurcation ratio, and how fractal geometry defines the network's complexity, while stream power explains how rivers carve their channels. We'll also discuss the surprising log-normal width of headwater streams around 32 cm, the restoration implications, and even how these rules might apply to river-like patterns on Mars and Titan. Note: This...
Show more...
Science
Technology,
Mathematics
RSS
All content for Intellectually Curious is the property of Mike Breault and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
We uncover how river networks are not random but self-organizing, guided by scale-invariant math. We'll explore Hack's Law and Horton’s laws, the bifurcation ratio, and how fractal geometry defines the network's complexity, while stream power explains how rivers carve their channels. We'll also discuss the surprising log-normal width of headwater streams around 32 cm, the restoration implications, and even how these rules might apply to river-like patterns on Mars and Titan. Note: This...
Show more...
Science
Technology,
Mathematics
https://storage.buzzsprout.com/g2flqohdyicxyo5jfu2lgzl9sait?.jpg
Fusing Time: The Math Behind Rope Puzzles
Intellectually Curious
5 minutes
4 days ago
Fusing Time: The Math Behind Rope Puzzles
A classic rope puzzle that seems simple unlocks a doorway to the foundations of mathematics. We trace how lighting two ends and timing the second fuse reveals the fusible numbers, show they are all dyadic rationals, and explore the well-ordered structure whose gaps encode epsilon naught—the proof-theoretic strength of Peano arithmetic. Join us as we connect a playful parlor trick to the absolute limits of formal arithmetic, revealing how the simplest rules can hide immense logical depth. Not...
Intellectually Curious
We uncover how river networks are not random but self-organizing, guided by scale-invariant math. We'll explore Hack's Law and Horton’s laws, the bifurcation ratio, and how fractal geometry defines the network's complexity, while stream power explains how rivers carve their channels. We'll also discuss the surprising log-normal width of headwater streams around 32 cm, the restoration implications, and even how these rules might apply to river-like patterns on Mars and Titan. Note: This...