In this episode, I talk about what we should consider to be a measure function. Such functions can be used to show termination of some process or program, by assigning a measure to each program, and showing that as the program computes, the measure decreases in some well-founded ordering. But what should count as a measure function? The context for this is RTA Open Problem 19, on showing termination for the simply typed lambda calculus using a measure function. Let's call th...
All content for Iowa Type Theory Commute is the property of Aaron Stump and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode, I talk about what we should consider to be a measure function. Such functions can be used to show termination of some process or program, by assigning a measure to each program, and showing that as the program computes, the measure decreases in some well-founded ordering. But what should count as a measure function? The context for this is RTA Open Problem 19, on showing termination for the simply typed lambda calculus using a measure function. Let's call th...
In this episode, I discuss the paper Nominal Techniques in Isabelle/HOL, by Christian Urban. This paper shows how to reason with terms modulo alpha-equivalence, using ideas from nominal logic. The basic idea is that instead of renamings, one works with permutations of names.
Iowa Type Theory Commute
In this episode, I talk about what we should consider to be a measure function. Such functions can be used to show termination of some process or program, by assigning a measure to each program, and showing that as the program computes, the measure decreases in some well-founded ordering. But what should count as a measure function? The context for this is RTA Open Problem 19, on showing termination for the simply typed lambda calculus using a measure function. Let's call th...