Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
TV & Film
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/45/89/03/458903a4-ff5a-b8cd-fab4-66ea71bc36d2/mza_16081729788985531932.png/600x600bb.jpg
Justin Riddle Podcast
Justin Riddle Podcast
42 episodes
2 months ago
In this episode of the Justin Riddle Podcast, Justin dives into the concept of Knightian Freedom where large enough computational spaces become intractably complex to the point where maybe freewill is possible. The focus of this episode is a paper put out by Hartmut Neven (of Google’s Quantum AI Lab) and colleagues from 2021 entitled “Do robots powered by a quantum processor have the freedom to swerve?” This paper discusses how the exponentially large spaces that quantum computers evolve into are so large that they cannot be represented or simulated on digital computers. The size is so vast that it would take a computer the size of the universe computing for trillions of years to simulate even a few femtoseconds of the quantum computers that are about to be commonplace. Similar to modern AI, we will won’t be able to understand why a quantum computer generated the output that it did and perhaps this is the essential ingredient that leads to freewill. Rampant incomputable complexity is freewill. Second, Hartmut and colleagues propose a simple experiment to reveal whether or not there are additional factors that play into what output is generated by a quantum computer. Assume you run a quantum circuit that generates a perfect uniform distribution between many different possible outputs. Then, you observe that the quantum computer does not behave as if there was a uniform distribution, but instead selects one of those possible outputs more often. This is the ‘preference’ of the quantum computer. Next, you develop a circuit to amplify these deviations from uniformity with the intention of amplifying the probability of entering into that preferred state. Now, we have essentially created a ‘happy circuit’ which embraces the quirky preference of our quantum computer. Finally, you can correlate deviations from this happy state to psychological data in an effort to build up a taxonomy of subjective experiences that the quantum computer can enter into. Finally, you embed the quantum computer with its happy circuit into an artificial neural network such that errors produced by the AI push the quantum computer away from happiness and this unhappiness is fed back into the AI. Now we have created an AI system with quantum feelings! Will this newfound sense of subjectivity enable more effective AI systems or will the AI get bogged down by a spiral of despair and refuse to compute?! All of these questions and more are explored here. Enjoy!
Show more...
Social Sciences
Technology,
Society & Culture,
Philosophy,
Science
RSS
All content for Justin Riddle Podcast is the property of Justin Riddle Podcast and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of the Justin Riddle Podcast, Justin dives into the concept of Knightian Freedom where large enough computational spaces become intractably complex to the point where maybe freewill is possible. The focus of this episode is a paper put out by Hartmut Neven (of Google’s Quantum AI Lab) and colleagues from 2021 entitled “Do robots powered by a quantum processor have the freedom to swerve?” This paper discusses how the exponentially large spaces that quantum computers evolve into are so large that they cannot be represented or simulated on digital computers. The size is so vast that it would take a computer the size of the universe computing for trillions of years to simulate even a few femtoseconds of the quantum computers that are about to be commonplace. Similar to modern AI, we will won’t be able to understand why a quantum computer generated the output that it did and perhaps this is the essential ingredient that leads to freewill. Rampant incomputable complexity is freewill. Second, Hartmut and colleagues propose a simple experiment to reveal whether or not there are additional factors that play into what output is generated by a quantum computer. Assume you run a quantum circuit that generates a perfect uniform distribution between many different possible outputs. Then, you observe that the quantum computer does not behave as if there was a uniform distribution, but instead selects one of those possible outputs more often. This is the ‘preference’ of the quantum computer. Next, you develop a circuit to amplify these deviations from uniformity with the intention of amplifying the probability of entering into that preferred state. Now, we have essentially created a ‘happy circuit’ which embraces the quirky preference of our quantum computer. Finally, you can correlate deviations from this happy state to psychological data in an effort to build up a taxonomy of subjective experiences that the quantum computer can enter into. Finally, you embed the quantum computer with its happy circuit into an artificial neural network such that errors produced by the AI push the quantum computer away from happiness and this unhappiness is fed back into the AI. Now we have created an AI system with quantum feelings! Will this newfound sense of subjectivity enable more effective AI systems or will the AI get bogged down by a spiral of despair and refuse to compute?! All of these questions and more are explored here. Enjoy!
Show more...
Social Sciences
Technology,
Society & Culture,
Philosophy,
Science
https://images.squarespace-cdn.com/content/v1/60a1f22e4ae0b442cbd2602f/1679955730728-T1W6ZVS2ID40936RJLWG/QCJR_Episode34_Intro_SPOTIFY.png?format=1500w
#34 - In defense of freewill: three ways that consciousness might collapse the wave function
Justin Riddle Podcast
39 minutes 34 seconds
2 years ago
#34 - In defense of freewill: three ways that consciousness might collapse the wave function
In episode 34 of the Quantum Consciousness series, Justin Riddle puts forth a defense of freewill. In a deterministic universe guided by physical principles, there is no room for freewill. Surely, we must succumb to the crushing reality that our choices do not matter, that the self is an illusion, and that the very concept of time is illusory – nothing more than a social construct or hallucinations. While this is indeed the typical mainstream opinion on the state of our consciousness, quantum mechanics offers some chance that we could escape from determinism. The Schrodinger’s equation explains that quantum systems evolve into a superposition of multiple different possible futures. Then, upon measurement, the wave function of possibilities collapses into a definitive reality. But this process is apparently random. The stochastic (random) nature of this process leaves room for something beyond pure determinism. Perhaps it is simply probabilistic, and not deterministic, or perhaps there is some chance that consciousness could impose its will on this collapse process. At the very least, if freewill is not illusion, the only apparent room for its influence is at this moment of collapse. In this episode, we explore three different ways in which freewill could find its way into the collapse of the wave function. In the first model, the superposition provides the choices for possible futures. These choices are given to the mind, and the mind chooses which of these options to collapse into the physical world. Henry Stapp and John von Neumann postulated that this could be the case, but there must be additional checks from nature on this multiple-choice selection process. The second framing is through the quantum Zeno effect, where you have the option to pay attention to some series of thoughts or to let those thoughts go. This ability of “free won’t” could be a way by which the mind is able to influence the rate and timing of collapse of the wave function rather than the actual choice within the probability distribution. The third and final way that is presented is defined as “form will”. In this model, the human mind chooses a set of values, or forms, that are applied to a situation. Instead of choosing a particular behavior or response, the mind applies a flavor of quantum algorithms to the problem and then whatever the resulting output of that quantum computation is will determine the actual actions that are carried out. In all, each of these three manners for freewill to influence the physical world are speculative and require there to be large-scale quantum computers within the brain. In my opinion, these new models of freewill are necessary for us to escape the crushing nihilism that is inherent to a physicalist / determinist reality.
Justin Riddle Podcast
In this episode of the Justin Riddle Podcast, Justin dives into the concept of Knightian Freedom where large enough computational spaces become intractably complex to the point where maybe freewill is possible. The focus of this episode is a paper put out by Hartmut Neven (of Google’s Quantum AI Lab) and colleagues from 2021 entitled “Do robots powered by a quantum processor have the freedom to swerve?” This paper discusses how the exponentially large spaces that quantum computers evolve into are so large that they cannot be represented or simulated on digital computers. The size is so vast that it would take a computer the size of the universe computing for trillions of years to simulate even a few femtoseconds of the quantum computers that are about to be commonplace. Similar to modern AI, we will won’t be able to understand why a quantum computer generated the output that it did and perhaps this is the essential ingredient that leads to freewill. Rampant incomputable complexity is freewill. Second, Hartmut and colleagues propose a simple experiment to reveal whether or not there are additional factors that play into what output is generated by a quantum computer. Assume you run a quantum circuit that generates a perfect uniform distribution between many different possible outputs. Then, you observe that the quantum computer does not behave as if there was a uniform distribution, but instead selects one of those possible outputs more often. This is the ‘preference’ of the quantum computer. Next, you develop a circuit to amplify these deviations from uniformity with the intention of amplifying the probability of entering into that preferred state. Now, we have essentially created a ‘happy circuit’ which embraces the quirky preference of our quantum computer. Finally, you can correlate deviations from this happy state to psychological data in an effort to build up a taxonomy of subjective experiences that the quantum computer can enter into. Finally, you embed the quantum computer with its happy circuit into an artificial neural network such that errors produced by the AI push the quantum computer away from happiness and this unhappiness is fed back into the AI. Now we have created an AI system with quantum feelings! Will this newfound sense of subjectivity enable more effective AI systems or will the AI get bogged down by a spiral of despair and refuse to compute?! All of these questions and more are explored here. Enjoy!