Send us a text In dieser Episode diskutieren Sigurd Schacht und Carsten Lanquillon über mechanistische Interpretierbarkeit - das Reverse Engineering von KI-Modellen. Sie beleuchten, warum dieses Forschungsfeld demokratisiert werden muss, welche Hürden dabei zu überwinden sind und wie emergentes Verhalten wie Induction Heads die Art verändert, wie wir über KI-Intelligenz denken. Ein Plädoyer für mehr Zugänglichkeit in der KI-Forschung jenseits der großen Tech-Labs. Support the show
All content for Knowledge Science - Alles über KI, ML und NLP is the property of Sigurd Schacht, Carsten Lanquillon and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Send us a text In dieser Episode diskutieren Sigurd Schacht und Carsten Lanquillon über mechanistische Interpretierbarkeit - das Reverse Engineering von KI-Modellen. Sie beleuchten, warum dieses Forschungsfeld demokratisiert werden muss, welche Hürden dabei zu überwinden sind und wie emergentes Verhalten wie Induction Heads die Art verändert, wie wir über KI-Intelligenz denken. Ein Plädoyer für mehr Zugänglichkeit in der KI-Forschung jenseits der großen Tech-Labs. Support the show
Episode 208 - Theory of Mind für KI: Wenn Maschinen lernen, uns zu verstehen
Knowledge Science - Alles über KI, ML und NLP
33 minutes
4 months ago
Episode 208 - Theory of Mind für KI: Wenn Maschinen lernen, uns zu verstehen
Send us a text In dieser Episode erkunden Sigurd und Carsten, wie KI-Modelle menschliche Präferenzen und Handlungen verstehen lernen können. Sie diskutieren das spannende Paper "Towards Machine Theory of Mind" und zeigen, wie die Kombination von Bayesian Networks mit Large Language Models neue Wege eröffnet, um aus beobachteten Handlungen auf zugrundeliegende Präferenzen zu schließen. Besonders faszinierend: Diese Methoden lassen sich auch nutzen, um die "mentalen Landkarten" von KI-Modellen ...
Knowledge Science - Alles über KI, ML und NLP
Send us a text In dieser Episode diskutieren Sigurd Schacht und Carsten Lanquillon über mechanistische Interpretierbarkeit - das Reverse Engineering von KI-Modellen. Sie beleuchten, warum dieses Forschungsfeld demokratisiert werden muss, welche Hürden dabei zu überwinden sind und wie emergentes Verhalten wie Induction Heads die Art verändert, wie wir über KI-Intelligenz denken. Ein Plädoyer für mehr Zugänglichkeit in der KI-Forschung jenseits der großen Tech-Labs. Support the show