Home
Categories
EXPLORE
True Crime
Comedy
Music
Society & Culture
Education
TV & Film
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts115/v4/39/d1/c7/39d1c707-9487-55b8-5225-e9ae54262292/mza_7129723090907127604.jpg/600x600bb.jpg
Linear Digressions
Ben Jaffe and Katie Malone
291 episodes
9 months ago
In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.
Show more...
Technology
RSS
All content for Linear Digressions is the property of Ben Jaffe and Katie Malone and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.
Show more...
Technology
https://i1.sndcdn.com/avatars-000193869760-sy993g-original.jpg
Criminology and Data Science
Linear Digressions
30 minutes 57 seconds
5 years ago
Criminology and Data Science
This episode features Zach Drake, a working data scientist and PhD candidate in the Criminology, Law and Society program at George Mason University. Zach specializes in bringing data science methods to studies of criminal behavior, and got in touch after our last episode (about racially complicated recidivism algorithms). Our conversation covers a wide range of topics—common misconceptions around race and crime statistics, how methodologically-driven criminology scholars think about building crime prediction models, and how to think about policy changes when we don’t have a complete understanding of cause and effect in criminology. For the many of us currently re-thinking race and criminal justice, but wanting to be data-driven about it, this conversation with Zach is a must-listen.
Linear Digressions
In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.