Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
History
Sports
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts211/v4/85/83/c3/8583c308-ba92-864c-4c06-beae89e4ab6c/mza_9538994040864923453.jpg/600x600bb.jpg
Multi-messenger astrophysics
Astro-COLIBRI
74 episodes
1 week ago
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.
Show more...
Astronomy
Science
RSS
All content for Multi-messenger astrophysics is the property of Astro-COLIBRI and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.
Show more...
Astronomy
Science
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/42166290/42166290-1765965791030-7c0974519141c.jpg
V1723 Sco and V6598 Sgr: Decoding the Fastest and Brightest Gamma-Ray Eruptions
Multi-messenger astrophysics
14 minutes 6 seconds
2 weeks ago
V1723 Sco and V6598 Sgr: Decoding the Fastest and Brightest Gamma-Ray Eruptions

Classical novae, thermonuclear eruptions on the surface of a white dwarf in a binary system, are known sources of high-energy gamma-rays detected by the Fermi-LAT. This episode explores a multi-wavelength analysis of two recent novae, **V1723 Sco 2024** and **V6598 Sgr 2023**, aiming to constrain the mechanism behind this intense gamma-ray emission.


**V1723 Sco** proved to be a very bright gamma-ray source, with emission lasting 15 days, allowing scientists to constrain the total energy and spectral properties of accelerated protons. Intriguingly, V1723 Sco also showed unexpected gamma-ray and thermal hard X-ray emission more than 40 days after its initial outburst, suggesting that particle acceleration can occur even several weeks post-eruption.


In contrast, **V6598 Sgr** was detected by Fermi-LAT for only two days, marking one of the shortest gamma-ray emission durations ever recorded for a classical nova. Its brief gamma-ray signal coincided with a rapid decline in optical brightness. V6598 Sgr also exhibits peculiar characteristics, including no significant gamma-ray emission below 1 GeV and the possibility that it is an Intermediate Polar (IP) system, which may hint at a different particle acceleration region due to potentially strong magnetic fields.


The detailed analysis, which combined Fermi-LAT data with optical (AAVSO) and X-ray (NuSTAR) observations, strongly supports the hypothesis that the gamma-ray generation in both novae is more consistent with the **hadronic scenario** (involving accelerated protons) than the leptonic scenario. However, the long-standing challenge remains: no non-thermal X-ray emission has been detected simultaneously with the gamma-rays.


**Article Reference:**


Fauverge, P., Jean, P., Sokolovsky, K., et al. (2025). *Fermi-LAT detections of the classical novae V1723 Sco and V6598 Sgr in a multi-wavelength context.* submitted to Astronomy & Astrophysics, arXiv: 2512.14198


Acknowledements: Podcast prepared with Google/NotebookLM. Illustration credits: NASA's Goddard Space Flight Center/S. Wiessinger

Multi-messenger astrophysics
Discussions around tools and discoveries in the novel domain of multi-messenger and time domain astrophysics. We'll highlight recent publications, discuss tools to faciliate observations and generally talk about the cool science behind the most violent explosions in the universe.