Home
Categories
EXPLORE
True Crime
Comedy
Sports
Society & Culture
Business
News
History
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts114/v4/6e/4c/f1/6e4cf16a-11d2-016c-fdd4-e145e15d049a/mza_10215802817563519116.jpeg/600x600bb.jpg
Post Mortem
François Paupier
26 episodes
1 week ago
In Post Mortem, engineers reflect on real-life incidents of IT systems they experienced. In each episode, we zoom on a specific event, ranging from a system outage, a cyber-attack, or a machine learning algorithm going wild with production data. We try to understand what happened and how the people behind those systems solved the situation. Along the way, you'll get hands-on advice shared by experienced practitioners that you can implement within your team to limit the risk of such incidents.
Show more...
Technology
RSS
All content for Post Mortem is the property of François Paupier and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In Post Mortem, engineers reflect on real-life incidents of IT systems they experienced. In each episode, we zoom on a specific event, ranging from a system outage, a cyber-attack, or a machine learning algorithm going wild with production data. We try to understand what happened and how the people behind those systems solved the situation. Along the way, you'll get hands-on advice shared by experienced practitioners that you can implement within your team to limit the risk of such incidents.
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/staging/podcast_uploaded_episode/8698156/e8e169ece0651ee5.jpeg
#11 Prédiction de retards à la SNCF 🚉
Post Mortem
35 minutes 48 seconds
4 years ago
#11 Prédiction de retards à la SNCF 🚉

Tous les jours, des millions de voyageurs prennent le train sur le réseau SNCF, mais parfois, un train subit un retard.

Aujourd'hui je reçois Héloïse Nonne, Head of Data Science & Engineering @ eSNCF, pour comprendre comment ce problème est adressé en interne pour améliorer l'information voyageurs.

Après avoir présenté les spécificités d'un projet ML dans un groupe qui opère sur plus de 30 000 km de voies, Héloïse revient sur la modélisation envisagée pour améliorer l'information voyageurs (10'00") avant de faire le bilan sur un projet mis en prod l'été 2019 (27'30").


Ressources

  • L'équipe d'Héloïse à rédigé un blog post qui détaille l'approche technique choisie pour la résolution, du feature engineering à l'industrialisation: https://www.digital.sncf.com/actualites/la-data-science-au-service-de-linformation-voyageur
  • Pour la contextualisation, on évoque les différentes activités du groupe SNCF: https://www.sncf.com/fr/groupe/profil-et-chiffres-cles/portrait-entreprise/qui-sommes-nous


Infos sur le podcast

  • La fréquence de Post Mortem va passer à 1 épisode par mois
  • Dans cet épisode, j'utilise des illustrations à certains moments (e.g., 14'11" au sujet de la "météo des retards") dites moi ce que vous en pensez en commentaires sur Apple Podcast ou en DM sur twitter @PodcastMortem  🙏
Post Mortem
In Post Mortem, engineers reflect on real-life incidents of IT systems they experienced. In each episode, we zoom on a specific event, ranging from a system outage, a cyber-attack, or a machine learning algorithm going wild with production data. We try to understand what happened and how the people behind those systems solved the situation. Along the way, you'll get hands-on advice shared by experienced practitioners that you can implement within your team to limit the risk of such incidents.