Abstract—We present and evaluate new ROS packages for
coordinated multi-robot exploration, namely communication,
global map construction, and exploration. The packages allow
completely distributed control and do not rely on (but allow)
central controllers. Their integration including application layer
protocols allows out of the box installation and execution. The
communication package enables reliable ad hoc communication
allowing to exchange local maps between robots which are
merged to a global map. Exploration uses the global map
to spatially spread robots and decrease exploration time. The
intention of the implementation is to offer basic functionality for
coordinated multi-robot systems and to enable other research
groups to experimentally work on multi-robot systems. The
packages are tested in real-world experiments using Turtlebot
and Pioneer robots. Further, we analyze their performance using
simulations and verify their correct working.
All content for Publications on self-organizing networked systems is the property of Lakeside Labs and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Abstract—We present and evaluate new ROS packages for
coordinated multi-robot exploration, namely communication,
global map construction, and exploration. The packages allow
completely distributed control and do not rely on (but allow)
central controllers. Their integration including application layer
protocols allows out of the box installation and execution. The
communication package enables reliable ad hoc communication
allowing to exchange local maps between robots which are
merged to a global map. Exploration uses the global map
to spatially spread robots and decrease exploration time. The
intention of the implementation is to offer basic functionality for
coordinated multi-robot systems and to enable other research
groups to experimentally work on multi-robot systems. The
packages are tested in real-world experiments using Turtlebot
and Pioneer robots. Further, we analyze their performance using
simulations and verify their correct working.
Major challenges for the transition of power sys- tems do not only tackle power electronics but also communication technology, power market economy and user acceptance studies. Simulation is an important research method therein, as it helps to avoid costly failures. A common smart grid simulation platform is still missing. We introduce a conceptual model of agents in multiple flow networks. Flow networks extend the depth of established power flow analysis through use of networks of information flow and financial transactions. We use this model as a basis for comparing different power system simulators. Furthermore, a quantitative comparison of simulators is done to facilitate the decision for a suitable tool in comprehensive smart grid simulation.
Publications on self-organizing networked systems
Abstract—We present and evaluate new ROS packages for
coordinated multi-robot exploration, namely communication,
global map construction, and exploration. The packages allow
completely distributed control and do not rely on (but allow)
central controllers. Their integration including application layer
protocols allows out of the box installation and execution. The
communication package enables reliable ad hoc communication
allowing to exchange local maps between robots which are
merged to a global map. Exploration uses the global map
to spatially spread robots and decrease exploration time. The
intention of the implementation is to offer basic functionality for
coordinated multi-robot systems and to enable other research
groups to experimentally work on multi-robot systems. The
packages are tested in real-world experiments using Turtlebot
and Pioneer robots. Further, we analyze their performance using
simulations and verify their correct working.