In this QCast episode, Jullia and Tom unpack how machine learning is being applied across the pharmaceutical industry. They discuss what machine learning means in a regulated drug development context, where it is already supporting discovery, development, and trial operations, and how teams can use these methods responsibly without undermining scientific or regulatory confidence. Key Takeaways Understand how machine learning differs from traditional statistical approaches, and why it is parti...
All content for QCast: Data-Driven Dialogue in Drug Development is the property of Quanticate and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this QCast episode, Jullia and Tom unpack how machine learning is being applied across the pharmaceutical industry. They discuss what machine learning means in a regulated drug development context, where it is already supporting discovery, development, and trial operations, and how teams can use these methods responsibly without undermining scientific or regulatory confidence. Key Takeaways Understand how machine learning differs from traditional statistical approaches, and why it is parti...
In this QCast episode, Jullia and Tom unpack missing data in clinical trials — why it biases effect estimates, how the estimand framework drives prevention and analysis choices, and what good sensitivity work and reporting look like for credible, inspection-ready results. Key Takeaways Define estimands and intercurrent-event strategies, then align follow-up and data collection. Prevent over correct with simpler schedules, remote options, continued follow-up, and early action ...
QCast: Data-Driven Dialogue in Drug Development
In this QCast episode, Jullia and Tom unpack how machine learning is being applied across the pharmaceutical industry. They discuss what machine learning means in a regulated drug development context, where it is already supporting discovery, development, and trial operations, and how teams can use these methods responsibly without undermining scientific or regulatory confidence. Key Takeaways Understand how machine learning differs from traditional statistical approaches, and why it is parti...