In this QCast episode, Jullia and Tom unpack how machine learning is being applied across the pharmaceutical industry. They discuss what machine learning means in a regulated drug development context, where it is already supporting discovery, development, and trial operations, and how teams can use these methods responsibly without undermining scientific or regulatory confidence. Key Takeaways Understand how machine learning differs from traditional statistical approaches, and why it is parti...
All content for QCast: Data-Driven Dialogue in Drug Development is the property of Quanticate and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this QCast episode, Jullia and Tom unpack how machine learning is being applied across the pharmaceutical industry. They discuss what machine learning means in a regulated drug development context, where it is already supporting discovery, development, and trial operations, and how teams can use these methods responsibly without undermining scientific or regulatory confidence. Key Takeaways Understand how machine learning differs from traditional statistical approaches, and why it is parti...
In this QCast episode, Jullia and Tom break down randomisation in clinical trials—why it matters, how different methods work, and what safeguards keep allocations fair and consistent across sites. They cover simple, block, and stratified randomisation, touch on unequal allocation and adaptive designs, and share a practical case study from a 5-arm trial. Key Takeaways Randomisation reduces bias, supports blinding, and strengthens trial validity.Simple, block, and stratified methods suit ...
QCast: Data-Driven Dialogue in Drug Development
In this QCast episode, Jullia and Tom unpack how machine learning is being applied across the pharmaceutical industry. They discuss what machine learning means in a regulated drug development context, where it is already supporting discovery, development, and trial operations, and how teams can use these methods responsibly without undermining scientific or regulatory confidence. Key Takeaways Understand how machine learning differs from traditional statistical approaches, and why it is parti...