On this episode of Roid Rage, Principal Flight Science Engineer Loic joins the pod to break down how we use Monte Carlo simulations to navigate deep space - starting with how we avoid hitting the Moon. Loic walks us through how probabilistic modeling, error bounding, and trajectory optimization keep DeepSpace‑2 on target. This episode covers everything from solar pressure to thrust vector error, and why simulating failure is core to mission design.
All content for Roid Rage is the property of AstroForge and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
On this episode of Roid Rage, Principal Flight Science Engineer Loic joins the pod to break down how we use Monte Carlo simulations to navigate deep space - starting with how we avoid hitting the Moon. Loic walks us through how probabilistic modeling, error bounding, and trajectory optimization keep DeepSpace‑2 on target. This episode covers everything from solar pressure to thrust vector error, and why simulating failure is core to mission design.
In this episode, we dig into what the space economy actually looks like today—versus how it’s been pitched. AstroForge Chief Business Officer Krystle Caponio joins Chap, Matt, and Robyn to talk about outdated incentive structures, what makes a sustainable space business, and why asteroid mining is built around Earth customers—not off-world speculation. From government contracts to failed pivots, this is what it’s really like to build for deep space.
Roid Rage
On this episode of Roid Rage, Principal Flight Science Engineer Loic joins the pod to break down how we use Monte Carlo simulations to navigate deep space - starting with how we avoid hitting the Moon. Loic walks us through how probabilistic modeling, error bounding, and trajectory optimization keep DeepSpace‑2 on target. This episode covers everything from solar pressure to thrust vector error, and why simulating failure is core to mission design.