Home
Categories
EXPLORE
Society & Culture
Music
Education
True Crime
History
Religion & Spirituality
Comedy
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts116/v4/b0/ea/a7/b0eaa7ff-d116-a232-0889-5076f665179d/mza_17263211783617196594.jpg/600x600bb.jpg
Stanford MLSys Seminar
Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré
24 episodes
1 week ago
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
RSS
All content for Stanford MLSys Seminar is the property of Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/production/podcast_uploaded_episode/20680941/20680941-1641610167061-1f50206eadefb.jpg
11/5/20 #4 Alex Ratner - Programmatically Building & Managing Training Data with Snorkel
Stanford MLSys Seminar
1 hour 13 minutes 29 seconds
3 years ago
11/5/20 #4 Alex Ratner - Programmatically Building & Managing Training Data with Snorkel

Alex Ratner - Programmatically Building & Managing Training Data with Snorkel

One of the key bottlenecks in building machine learning systems is creating and managing the massive training datasets that today's models require. In this talk, I will describe our work on Snorkel (snorkel.org), an open-source framework for building and managing training datasets, and describe three key operators for letting users build and manipulate training datasets: labeling functions, for labeling unlabeled data; transformation functions, for expressing data augmentation strategies; and slicing functions, for partitioning and structuring training datasets.  These operators allow domain expert users to specify machine learning (ML) models entirely via noisy operators over training data, expressed as simple Python functions---or even via higher level NL or point-and-click interfaces---leading to applications that can be built in hours or days, rather than months or years, and that can be iteratively developed, modified, versioned, and audited. I will describe recent work on modeling the noise and imprecision inherent in these operators, and using these approaches to train ML models that solve real-world problems, including recent state-of-the-art results on benchmark tasks and real-world industry, government, and medical deployments.

Stanford MLSys Seminar
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ