Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
TV & Film
Sports
Health & Fitness
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts116/v4/b0/ea/a7/b0eaa7ff-d116-a232-0889-5076f665179d/mza_17263211783617196594.jpg/600x600bb.jpg
Stanford MLSys Seminar
Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré
24 episodes
1 week ago
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
RSS
All content for Stanford MLSys Seminar is the property of Dan Fu, Karan Goel, Fiodar Kazhamakia, Piero Molino, Matei Zaharia, Chris Ré and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ
Show more...
Technology
https://d3t3ozftmdmh3i.cloudfront.net/production/podcast_uploaded_nologo400/20680941/20680941-1641609936241-adeced5f38a5d.jpg
12/3/20 #7 Matthias Poloczek - Bayesian Optimization
Stanford MLSys Seminar
59 minutes 20 seconds
3 years ago
12/3/20 #7 Matthias Poloczek - Bayesian Optimization

Matthias Poloczek - Scalable Bayesian Optimization for Industrial Applications

Bayesian optimization has become a powerful method for the sample-efficient optimization of expensive black-box functions. These functions do not have a closed-form and are evaluated for example by running a complex economic simulation, by an experiment in the lab or in a market, or by a CFD simulation.  Use cases arise in machine learning, e.g., when tuning the configuration of an ML model or when optimizing a reinforcement learning policy.  Examples in engineering include the design of aerodynamic structures or materials discovery.

In this talk I will introduce the key ideas of Bayesian optimization and discuss how they can be applied to tuning ML models.  Moreover, I will share some experiences with developing a Bayesian optimization service in industry.

Stanford MLSys Seminar
Machine learning is driving exciting changes and progress in computing. What does the ubiquity of machine learning mean for how people build and deploy systems and applications? What challenges does industry face when deploying machine learning systems in the real world, and how can academia rise to meet those challenges? Updates every Monday and Friday - old episodes on Mondays, new episodes on Fridays! Check out our website and your YouTube channel for full videos! https://mlsys.stanford.edu/ https://www.youtube.com/channel/UCzz6ructab1U44QPI3HpZEQ