In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
All content for the bioinformatics lab is the property of The Bioinformatics Lab and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
Summary
In this episode, Kevin Libuit and Andrew Page discuss their personal experiences with job hunting in the bioinformatics field, emphasizing the importance of professional networks and genuine relationships. They share anecdotes about how their careers were shaped by connections made through academia and social interactions. The conversation highlights actionable advice for job seekers, including leveraging social media and engaging with the community to build a robust professional network.
Takeaways
All jobs can stem from knowing the right people.
Building a professional network is essential for career growth.
Genuine curiosity and kindness can lead to unexpected opportunities.
Networking should be organic, not forced or transactional.
Social media platforms are valuable tools for connecting with others.
Engaging in community discussions can enhance visibility and opportunities.
Conferences provide a great avenue for networking and learning.
It's important to have a clear online presence, like LinkedIn.
Networking is about mutual interest, not just self-promotion.
Being helpful and interested in others can pay off in the long run.
the bioinformatics lab
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.