In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
All content for the bioinformatics lab is the property of The Bioinformatics Lab and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
Summary
In this episode of the Bioinformatics Lab podcast, Kevin Libuit and Krisandra Allen discuss the integration of bioinformatics and epidemiology, focusing on the challenges and solutions in utilizing genomic sequencing data for infectious disease surveillance. They explore the roles of epidemiologists and bioinformaticians, the importance of communication and collaboration, and the need for bi-directional learning to enhance public health practices. The conversation emphasizes the significance of building relationships and understanding each other's fields to effectively turn sequencing data into actionable insights for disease control.
Takeaways
Epidemiologists work on the front lines of public health.
Genomic data can help build and confirm hypotheses in investigations.
Integrating genetic data with epidemiological data enhances disease surveillance.
Surveillance systems must be designed to drive public health action.
Communication between labs and epidemiologists is crucial for effective data use.
Bi-directional learning is essential for both epidemiologists and bioinformaticians.
Genomic epidemiologists can bridge the gap between bioinformatics and epidemiology.
Building relationships is the first step towards effective collaboration.
Training opportunities should be available for both sides to learn from each other.
Collaboration is key to successfully integrating bioinformatics into public health.
the bioinformatics lab
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.