In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
All content for the bioinformatics lab is the property of The Bioinformatics Lab and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
EP 61: MiDog Technical Deep Dive with Kaylie Zapanta
the bioinformatics lab
48 minutes 18 seconds
2 months ago
EP 61: MiDog Technical Deep Dive with Kaylie Zapanta
Summary
In this engaging conversation, Kaylie Zapanta, a PhD in neurophysiology, discusses her journey from academia to her current role at MyDog, where she focuses on veterinary diagnostics through NGS data. The discussion highlights the complexities of microbial interactions, the importance of effective communication of scientific data to clinicians, and the future of diagnostics in veterinary medicine, emphasizing the shift towards sequencing technologies over traditional methods.
the bioinformatics lab
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.