In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
All content for the bioinformatics lab is the property of The Bioinformatics Lab and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.
EP 62: Public Health Pathogen Genomics in Africa with James Otieno
the bioinformatics lab
1 hour 1 second
2 months ago
EP 62: Public Health Pathogen Genomics in Africa with James Otieno
Summary
In this episode of the Bioinformatics Lab podcast, James Oteno shares his journey as a bioinformatician and genomic epidemiologist, discussing the intersection of bioinformatics and public health, particularly in the context of emerging pathogens in Africa. The conversation covers the importance of both wet lab and dry lab skills, the role of KEMRI in global health, and the impact of COVID-19 on public health practices. Oteno also delves into the MPOX outbreak, the rapid sequencing technology used in Ebola outbreaks, and the future of genomic epidemiology in Africa, emphasizing the need for collaborative networks and equitable partnerships in global health efforts.
the bioinformatics lab
In this episode of the Bioinformatics Lab Podcast, Mxolisi Nene shares his journey from a curious kid “scanning soil” with a stick and a broken Pentium II in rural KwaZulu-Natal to a bioinformatician and PhD candidate at the Agricultural Research Council in Pretoria. He walks through his path from animal science into bioinformatics, profiling the gut microbiomes of indigenous village chickens using 16S and metagenomic sequencing, and how wrestling with messy real-world data led him into multi-omics integration and machine learning. Mxolisi explains concepts like feature engineering, neural networks, and ecological “tipping points” in soil ecosystems—showing how combining metagenomic, metabolomic, proteomic, and genomic layers can help predict when an environment is on the brink of collapse, with implications for agriculture, food security, and even disease research.
We also dig into the philosophical side of his work: why the explosion of public omics data makes it almost a moral obligation to use these tools for better outbreak prevention and environmental stewardship, how conferences like PHA4GE in Cape Town and the AI working group are quietly seeding a new generation of multi-omics scientists, and what it feels like to realize that the five-year-old kid obsessed with dirt grew up to do exactly what he was pretending to do—only now with HPC clusters, neural nets, and GitHub.