Energy security represents one of Taiwan’s most pressing challenges. With virtually no domestic fossil fuel resources and limited renewable energy potential relative to its needs, the island imports approximately 98% of its energy. The semiconductor fabrication plants that drive the economy are particularly energy-intensive, requiring uninterrupted power supplies to maintain their precision manufacturing processes. Any disruption in electricity can halt production lines worth billions of dollars, making grid stability and efficient power generation not merely infrastructure concerns but fundamental pillars of Taiwan’s economic competitiveness.
This reality has driven the island to pursue cutting-edge power generation technologies, including advanced combined cycle plants that can deliver maximum efficiency from imported natural gas. One such plant, the Sun Ba II facility, entered commercial operation in May 2025. It was recently recognized as a 2025 POWER Top Plant award winner.
“That this project got recognized with your power plant award, I think this is really a nice story and a nice finish I would never have expected when I came here,” Thomas Ringmann, director of Business Development with Siemens Energy, said as a guest on The POWER Podcast.
Sun Ba II is a 2 x 1 multi-shaft configuration, which means there are two gas turbines and two heat recovery steam generators (HRSGs) serving one steam turbine. The gas turbines and the steam turbine each have their own generators. “We have used in this project our latest and biggest gas turbine—the SGT-9000HL,” Ringmann explained. “The steam turbine is a SST-5000, so that’s a triple-pressure steam turbine with a combined HP [high-pressure] and IP [intermediate-pressure] turbine, and a dual-flow LP [low-pressure] turbine. Also, we had an air-cooled condenser, condensing the steam from that steam turbine, and we had a three-pressure reheat HRSG, which was of Benson-type technology.”
The project began at the peak of the COVID pandemic, which presented a large challenge. “Every project meeting, every design meeting, every coordination meeting were all done online,” Andy Chang, project manager with Siemens Energy, said. “Everything was done online, because nobody can travel. We just had to figure this out.”
Effective collaboration among project partners was a key to success. “The collaboration is not only with our consortium partner—CTCI, an EPC [engineering, procurement, and construction] company—but actually with also the customer, Sun Ba Power,” Ewen Chi, sales manager with Siemens Energy, said. “Everybody has the same target, which is to bring power on grid as soon as possible. So, with this same-boat mentality—everybody sitting in the same boat and rowing toward the target—actually helped the project to be successful and to overcome many challenges.” Chang agreed that on-time completion was only possible with all parties maintaining a collaborative spirit.
“This power plant right now is predominantly running on baseload operation,” Ringmann reported. “So, given that high grade of operations along with a high gas price, the efficiency of our turbines actually is a key contributor to an economic value of the customer.”
Meanwhile, the lessons learned from this first deployment of HL technology in Taiwan are being applied to a new project. Siemens Energy and CTCI are now collaborating on the Kuo Kuang II power plant, which is under construction in Taoyuan, northern Taiwan. “Because we have this momentum and this mentality from Sun Ba II execution, now each side, they decided that they will keep their core team member from both sides, and they will continue to cherish this partnership with the next project,” Chang reported.
All content for The POWER Podcast is the property of POWER and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Energy security represents one of Taiwan’s most pressing challenges. With virtually no domestic fossil fuel resources and limited renewable energy potential relative to its needs, the island imports approximately 98% of its energy. The semiconductor fabrication plants that drive the economy are particularly energy-intensive, requiring uninterrupted power supplies to maintain their precision manufacturing processes. Any disruption in electricity can halt production lines worth billions of dollars, making grid stability and efficient power generation not merely infrastructure concerns but fundamental pillars of Taiwan’s economic competitiveness.
This reality has driven the island to pursue cutting-edge power generation technologies, including advanced combined cycle plants that can deliver maximum efficiency from imported natural gas. One such plant, the Sun Ba II facility, entered commercial operation in May 2025. It was recently recognized as a 2025 POWER Top Plant award winner.
“That this project got recognized with your power plant award, I think this is really a nice story and a nice finish I would never have expected when I came here,” Thomas Ringmann, director of Business Development with Siemens Energy, said as a guest on The POWER Podcast.
Sun Ba II is a 2 x 1 multi-shaft configuration, which means there are two gas turbines and two heat recovery steam generators (HRSGs) serving one steam turbine. The gas turbines and the steam turbine each have their own generators. “We have used in this project our latest and biggest gas turbine—the SGT-9000HL,” Ringmann explained. “The steam turbine is a SST-5000, so that’s a triple-pressure steam turbine with a combined HP [high-pressure] and IP [intermediate-pressure] turbine, and a dual-flow LP [low-pressure] turbine. Also, we had an air-cooled condenser, condensing the steam from that steam turbine, and we had a three-pressure reheat HRSG, which was of Benson-type technology.”
The project began at the peak of the COVID pandemic, which presented a large challenge. “Every project meeting, every design meeting, every coordination meeting were all done online,” Andy Chang, project manager with Siemens Energy, said. “Everything was done online, because nobody can travel. We just had to figure this out.”
Effective collaboration among project partners was a key to success. “The collaboration is not only with our consortium partner—CTCI, an EPC [engineering, procurement, and construction] company—but actually with also the customer, Sun Ba Power,” Ewen Chi, sales manager with Siemens Energy, said. “Everybody has the same target, which is to bring power on grid as soon as possible. So, with this same-boat mentality—everybody sitting in the same boat and rowing toward the target—actually helped the project to be successful and to overcome many challenges.” Chang agreed that on-time completion was only possible with all parties maintaining a collaborative spirit.
“This power plant right now is predominantly running on baseload operation,” Ringmann reported. “So, given that high grade of operations along with a high gas price, the efficiency of our turbines actually is a key contributor to an economic value of the customer.”
Meanwhile, the lessons learned from this first deployment of HL technology in Taiwan are being applied to a new project. Siemens Energy and CTCI are now collaborating on the Kuo Kuang II power plant, which is under construction in Taoyuan, northern Taiwan. “Because we have this momentum and this mentality from Sun Ba II execution, now each side, they decided that they will keep their core team member from both sides, and they will continue to cherish this partnership with the next project,” Chang reported.
194. Hockey Hall of Famer Champions Geothermal Innovation in NYC
The POWER Podcast
45 minutes 20 seconds
4 months ago
194. Hockey Hall of Famer Champions Geothermal Innovation in NYC
The name Mike Richter is well-known among hockey fans. Richter spent 15 years in the National Hockey League as a goalie for the New York Rangers, including in 1994 when he was a fixture in the net during the team’s Stanley Cup winning season. Richter was also recognized as the most valuable player for the U.S.’s 1996 gold medal winning World Cup team, as well as a member of three U.S. Olympic teams, including in 2002 when the team won the silver medal. Richter was inducted into the U.S. Hockey Hall of Fame in 2008.
But what is likely lesser known is that Richter is the current president of Brightcore Energy, a leading provider of integrated, end-to-end clean energy solutions to the commercial, institutional, and government markets. The Armonk, New York–headquartered company’s services include high-efficiency geothermal-based heating and cooling systems for both new construction and existing building retrofits, among other things. Brightcore’s turnkey, single-point solution encompasses all project development phases including preliminary modeling, feasibility and design, incentive and policy guidance, construction and implementation, and system performance monitoring.
As a guest on The POWER Podcast, Richter noted that heating, ventilation, and air conditioning (HVAC) systems for commercial, industrial, and municipal buildings consume an enormous amount of energy in a place like New York City. Furthermore, the emissions associated with these systems can be significant. “If you can address that, you’re doing something important, and that’s really where our focus has been, particularly the last few years,” he said.
Geothermal Heating and Cooling Systems
Traditional geothermal often requires significant open space for the geothermal borefield and can have material time implications in project development. Brightcore says its exclusive UrbanGeo solution combines proprietary geothermal drilling technology and techniques that increase the feasibility of geothermal heating and cooling applicability while reducing construction development timelines.
“We typically go between 500 and 1,000 feet down,” Richter explained. “The ambient temperature of the ground about four feet down below our feet here in New York is 55 degrees [Fahrenheit] year-round.”
The constant and stable underground temperature is the key to geothermal heating and cooling systems. Even when the air above ground is extremely hot or freezing cold, the earth’s steady temperature provides a valuable heating or cooling resource.
A geothermal system has pipes buried underground that fluid is circulated through, and a heat pump inside the building. In winter, the fluid in the pipes absorbs warmth from the earth and brings it inside. There, the heat pump “compresses” this heat, raising its temperature so it can warm the building air comfortably—even when it’s icy cold outside.
In summer, the system works in reverse. The heat pump pulls heat out of the building’s air, sending it through the same underground pipes. Since the earth is cooler than the hot summer air, it acts like a giant heat sponge, soaking up unwanted heat from the building. This process cools the living space easily and efficiently, using a lot less energy than a regular air conditioner because the ground is always cooler than the hot outdoor air.
So, whether it’s heating or cooling, a geothermal system can keep buildings comfortable by moving heat between the building and the earth. “[It’s] pretty straightforward and very, very efficient and effective, particularly—and this is key—at the extremes,” said Richter. “Air source heat pumps are excellent and they continue to get better,” he added.
The POWER Podcast
Energy security represents one of Taiwan’s most pressing challenges. With virtually no domestic fossil fuel resources and limited renewable energy potential relative to its needs, the island imports approximately 98% of its energy. The semiconductor fabrication plants that drive the economy are particularly energy-intensive, requiring uninterrupted power supplies to maintain their precision manufacturing processes. Any disruption in electricity can halt production lines worth billions of dollars, making grid stability and efficient power generation not merely infrastructure concerns but fundamental pillars of Taiwan’s economic competitiveness.
This reality has driven the island to pursue cutting-edge power generation technologies, including advanced combined cycle plants that can deliver maximum efficiency from imported natural gas. One such plant, the Sun Ba II facility, entered commercial operation in May 2025. It was recently recognized as a 2025 POWER Top Plant award winner.
“That this project got recognized with your power plant award, I think this is really a nice story and a nice finish I would never have expected when I came here,” Thomas Ringmann, director of Business Development with Siemens Energy, said as a guest on The POWER Podcast.
Sun Ba II is a 2 x 1 multi-shaft configuration, which means there are two gas turbines and two heat recovery steam generators (HRSGs) serving one steam turbine. The gas turbines and the steam turbine each have their own generators. “We have used in this project our latest and biggest gas turbine—the SGT-9000HL,” Ringmann explained. “The steam turbine is a SST-5000, so that’s a triple-pressure steam turbine with a combined HP [high-pressure] and IP [intermediate-pressure] turbine, and a dual-flow LP [low-pressure] turbine. Also, we had an air-cooled condenser, condensing the steam from that steam turbine, and we had a three-pressure reheat HRSG, which was of Benson-type technology.”
The project began at the peak of the COVID pandemic, which presented a large challenge. “Every project meeting, every design meeting, every coordination meeting were all done online,” Andy Chang, project manager with Siemens Energy, said. “Everything was done online, because nobody can travel. We just had to figure this out.”
Effective collaboration among project partners was a key to success. “The collaboration is not only with our consortium partner—CTCI, an EPC [engineering, procurement, and construction] company—but actually with also the customer, Sun Ba Power,” Ewen Chi, sales manager with Siemens Energy, said. “Everybody has the same target, which is to bring power on grid as soon as possible. So, with this same-boat mentality—everybody sitting in the same boat and rowing toward the target—actually helped the project to be successful and to overcome many challenges.” Chang agreed that on-time completion was only possible with all parties maintaining a collaborative spirit.
“This power plant right now is predominantly running on baseload operation,” Ringmann reported. “So, given that high grade of operations along with a high gas price, the efficiency of our turbines actually is a key contributor to an economic value of the customer.”
Meanwhile, the lessons learned from this first deployment of HL technology in Taiwan are being applied to a new project. Siemens Energy and CTCI are now collaborating on the Kuo Kuang II power plant, which is under construction in Taoyuan, northern Taiwan. “Because we have this momentum and this mentality from Sun Ba II execution, now each side, they decided that they will keep their core team member from both sides, and they will continue to cherish this partnership with the next project,” Chang reported.