Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
TV & Film
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/b8/30/65/b8306514-6167-da6f-5b5f-f690277c1e02/mza_8299069466679674950.jpg/600x600bb.jpg
The POWER Podcast
POWER
201 episodes
1 month ago
Energy security represents one of Taiwan’s most pressing challenges. With virtually no domestic fossil fuel resources and limited renewable energy potential relative to its needs, the island imports approximately 98% of its energy. The semiconductor fabrication plants that drive the economy are particularly energy-intensive, requiring uninterrupted power supplies to maintain their precision manufacturing processes. Any disruption in electricity can halt production lines worth billions of dollars, making grid stability and efficient power generation not merely infrastructure concerns but fundamental pillars of Taiwan’s economic competitiveness. This reality has driven the island to pursue cutting-edge power generation technologies, including advanced combined cycle plants that can deliver maximum efficiency from imported natural gas. One such plant, the Sun Ba II facility, entered commercial operation in May 2025. It was recently recognized as a 2025 POWER Top Plant award winner. “That this project got recognized with your power plant award, I think this is really a nice story and a nice finish I would never have expected when I came here,” Thomas Ringmann, director of Business Development with Siemens Energy, said as a guest on The POWER Podcast. Sun Ba II is a 2 x 1 multi-shaft configuration, which means there are two gas turbines and two heat recovery steam generators (HRSGs) serving one steam turbine. The gas turbines and the steam turbine each have their own generators. “We have used in this project our latest and biggest gas turbine—the SGT-9000HL,” Ringmann explained. “The steam turbine is a SST-5000, so that’s a triple-pressure steam turbine with a combined HP [high-pressure] and IP [intermediate-pressure] turbine, and a dual-flow LP [low-pressure] turbine. Also, we had an air-cooled condenser, condensing the steam from that steam turbine, and we had a three-pressure reheat HRSG, which was of Benson-type technology.” The project began at the peak of the COVID pandemic, which presented a large challenge. “Every project meeting, every design meeting, every coordination meeting were all done online,” Andy Chang, project manager with Siemens Energy, said. “Everything was done online, because nobody can travel. We just had to figure this out.” Effective collaboration among project partners was a key to success. “The collaboration is not only with our consortium partner—CTCI, an EPC [engineering, procurement, and construction] company—but actually with also the customer, Sun Ba Power,” Ewen Chi, sales manager with Siemens Energy, said. “Everybody has the same target, which is to bring power on grid as soon as possible. So, with this same-boat mentality—everybody sitting in the same boat and rowing toward the target—actually helped the project to be successful and to overcome many challenges.” Chang agreed that on-time completion was only possible with all parties maintaining a collaborative spirit. “This power plant right now is predominantly running on baseload operation,” Ringmann reported. “So, given that high grade of operations along with a high gas price, the efficiency of our turbines actually is a key contributor to an economic value of the customer.” Meanwhile, the lessons learned from this first deployment of HL technology in Taiwan are being applied to a new project. Siemens Energy and CTCI are now collaborating on the Kuo Kuang II power plant, which is under construction in Taoyuan, northern Taiwan. “Because we have this momentum and this mentality from Sun Ba II execution, now each side, they decided that they will keep their core team member from both sides, and they will continue to cherish this partnership with the next project,” Chang reported.
Show more...
Technology
RSS
All content for The POWER Podcast is the property of POWER and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Energy security represents one of Taiwan’s most pressing challenges. With virtually no domestic fossil fuel resources and limited renewable energy potential relative to its needs, the island imports approximately 98% of its energy. The semiconductor fabrication plants that drive the economy are particularly energy-intensive, requiring uninterrupted power supplies to maintain their precision manufacturing processes. Any disruption in electricity can halt production lines worth billions of dollars, making grid stability and efficient power generation not merely infrastructure concerns but fundamental pillars of Taiwan’s economic competitiveness. This reality has driven the island to pursue cutting-edge power generation technologies, including advanced combined cycle plants that can deliver maximum efficiency from imported natural gas. One such plant, the Sun Ba II facility, entered commercial operation in May 2025. It was recently recognized as a 2025 POWER Top Plant award winner. “That this project got recognized with your power plant award, I think this is really a nice story and a nice finish I would never have expected when I came here,” Thomas Ringmann, director of Business Development with Siemens Energy, said as a guest on The POWER Podcast. Sun Ba II is a 2 x 1 multi-shaft configuration, which means there are two gas turbines and two heat recovery steam generators (HRSGs) serving one steam turbine. The gas turbines and the steam turbine each have their own generators. “We have used in this project our latest and biggest gas turbine—the SGT-9000HL,” Ringmann explained. “The steam turbine is a SST-5000, so that’s a triple-pressure steam turbine with a combined HP [high-pressure] and IP [intermediate-pressure] turbine, and a dual-flow LP [low-pressure] turbine. Also, we had an air-cooled condenser, condensing the steam from that steam turbine, and we had a three-pressure reheat HRSG, which was of Benson-type technology.” The project began at the peak of the COVID pandemic, which presented a large challenge. “Every project meeting, every design meeting, every coordination meeting were all done online,” Andy Chang, project manager with Siemens Energy, said. “Everything was done online, because nobody can travel. We just had to figure this out.” Effective collaboration among project partners was a key to success. “The collaboration is not only with our consortium partner—CTCI, an EPC [engineering, procurement, and construction] company—but actually with also the customer, Sun Ba Power,” Ewen Chi, sales manager with Siemens Energy, said. “Everybody has the same target, which is to bring power on grid as soon as possible. So, with this same-boat mentality—everybody sitting in the same boat and rowing toward the target—actually helped the project to be successful and to overcome many challenges.” Chang agreed that on-time completion was only possible with all parties maintaining a collaborative spirit. “This power plant right now is predominantly running on baseload operation,” Ringmann reported. “So, given that high grade of operations along with a high gas price, the efficiency of our turbines actually is a key contributor to an economic value of the customer.” Meanwhile, the lessons learned from this first deployment of HL technology in Taiwan are being applied to a new project. Siemens Energy and CTCI are now collaborating on the Kuo Kuang II power plant, which is under construction in Taoyuan, northern Taiwan. “Because we have this momentum and this mentality from Sun Ba II execution, now each side, they decided that they will keep their core team member from both sides, and they will continue to cherish this partnership with the next project,” Chang reported.
Show more...
Technology
https://i1.sndcdn.com/artworks-Cy9lhzrWSHOeb0US-pKDxmg-t3000x3000.png
198. Advocating for Public Power Companies: LPPC Focuses on Load Growth, FEMA Reform, and Tax-Exempt Bonds
The POWER Podcast
28 minutes 58 seconds
1 month ago
198. Advocating for Public Power Companies: LPPC Focuses on Load Growth, FEMA Reform, and Tax-Exempt Bonds
Public power utilities are community-owned, not-for-profit electric utilities that deliver reliable, low-cost electricity to about 2,000 communities serving more than 55 million Americans. Among the cities served by public power utilities are Austin, Texas; Nashville, Tennessee; Los Angeles, California; Jacksonville, Florida; and Seattle, Washington. The Large Public Power Council (LPPC) is the voice of large public power in Washington, D.C. It advocates for policies that enable members to build critical energy infrastructure, power the growth of the economy, and provide affordable and reliable electricity to millions of Americans. The LPPC’s members are 29 of the largest public power systems in the nation. Together, they serve 30.5 million consumers across 23 states and territories. Tom Falcone, president of the LPPC, noted that all power companies, whether publicly owned, cooperatives, or investor-owned utilities (IOUs), are in the same business, that is, to reliably deliver electricity to customers. The big difference is that public power companies are accountable at home. “We’re publicly owned. We are not-for-profit. We are community oriented. We’re mission oriented. And so, our real goal, and only goal in life, is reliable, affordable power—sustainable power—back home at the least cost to customers,” Falcone said as a guest on The POWER Podcast. “So, we’re not necessarily looking to grow loads or grow earnings, unless that’s favorable to our community, unless we’re meeting the needs of our community or lowering costs for them.” Public power companies face many of the same concerns as co-ops and IOUs. One of the biggest challenges today is rapid load growth, driven by data centers, artificial intelligence (AI), and the increasing electrification of manufacturing and transportation. “The biggest thing is that the load is arriving faster and lumpier, and in a more concentrated fashion, than it has in the past,” explained Falcone. “Historically, when somebody new came to town, they wanted, you know, 5 MW, or maybe they were really large and they wanted 100 MW,” said Falcone. “But what we have today is folks who come to town and they want a GW, which is enough to power probably 600,000 homes, depending on what part of the country you’re in.” Falcone said about half of LPPC’s members are seeing this very, very rapid growth. “They could double over the next 10 years,” he said. While the demand for the energy is very immediate, utilities’ ability to build infrastructure is not. “We have to go through the same permitting and public processes, and construction and supply chain, and it just doesn’t allow us to build quite that fast,” Falcone reported.
The POWER Podcast
Energy security represents one of Taiwan’s most pressing challenges. With virtually no domestic fossil fuel resources and limited renewable energy potential relative to its needs, the island imports approximately 98% of its energy. The semiconductor fabrication plants that drive the economy are particularly energy-intensive, requiring uninterrupted power supplies to maintain their precision manufacturing processes. Any disruption in electricity can halt production lines worth billions of dollars, making grid stability and efficient power generation not merely infrastructure concerns but fundamental pillars of Taiwan’s economic competitiveness. This reality has driven the island to pursue cutting-edge power generation technologies, including advanced combined cycle plants that can deliver maximum efficiency from imported natural gas. One such plant, the Sun Ba II facility, entered commercial operation in May 2025. It was recently recognized as a 2025 POWER Top Plant award winner. “That this project got recognized with your power plant award, I think this is really a nice story and a nice finish I would never have expected when I came here,” Thomas Ringmann, director of Business Development with Siemens Energy, said as a guest on The POWER Podcast. Sun Ba II is a 2 x 1 multi-shaft configuration, which means there are two gas turbines and two heat recovery steam generators (HRSGs) serving one steam turbine. The gas turbines and the steam turbine each have their own generators. “We have used in this project our latest and biggest gas turbine—the SGT-9000HL,” Ringmann explained. “The steam turbine is a SST-5000, so that’s a triple-pressure steam turbine with a combined HP [high-pressure] and IP [intermediate-pressure] turbine, and a dual-flow LP [low-pressure] turbine. Also, we had an air-cooled condenser, condensing the steam from that steam turbine, and we had a three-pressure reheat HRSG, which was of Benson-type technology.” The project began at the peak of the COVID pandemic, which presented a large challenge. “Every project meeting, every design meeting, every coordination meeting were all done online,” Andy Chang, project manager with Siemens Energy, said. “Everything was done online, because nobody can travel. We just had to figure this out.” Effective collaboration among project partners was a key to success. “The collaboration is not only with our consortium partner—CTCI, an EPC [engineering, procurement, and construction] company—but actually with also the customer, Sun Ba Power,” Ewen Chi, sales manager with Siemens Energy, said. “Everybody has the same target, which is to bring power on grid as soon as possible. So, with this same-boat mentality—everybody sitting in the same boat and rowing toward the target—actually helped the project to be successful and to overcome many challenges.” Chang agreed that on-time completion was only possible with all parties maintaining a collaborative spirit. “This power plant right now is predominantly running on baseload operation,” Ringmann reported. “So, given that high grade of operations along with a high gas price, the efficiency of our turbines actually is a key contributor to an economic value of the customer.” Meanwhile, the lessons learned from this first deployment of HL technology in Taiwan are being applied to a new project. Siemens Energy and CTCI are now collaborating on the Kuo Kuang II power plant, which is under construction in Taoyuan, northern Taiwan. “Because we have this momentum and this mentality from Sun Ba II execution, now each side, they decided that they will keep their core team member from both sides, and they will continue to cherish this partnership with the next project,” Chang reported.