Tianqi Chen is an Assistant Professor in the Machine Learning Department and Computer Science Department at Carnegie Mellon University and the Chief Technologist of OctoML. His research focuses on the intersection of machine learning and systems.
Tianqi's PhD thesis is titled "Scalable and Intelligent Learning Systems," which he completed in 2019 at the University of Washington. We discuss his influential work on machine learning systems, starting with the development of XGBoost,an optimized distributed gradient boosting library that has had an enormous impact in the field. We also cover his contributions to deep learning frameworks like MXNet and machine learning compilation with TVM, and connect these to modern generative AI.
- Episode notes: www.wellecks.com/thesisreview/episode48.html
- Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter
- Follow Tianqi Chen on Twitter (@tqchenml)
- Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
All content for The Thesis Review is the property of Sean Welleck and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Tianqi Chen is an Assistant Professor in the Machine Learning Department and Computer Science Department at Carnegie Mellon University and the Chief Technologist of OctoML. His research focuses on the intersection of machine learning and systems.
Tianqi's PhD thesis is titled "Scalable and Intelligent Learning Systems," which he completed in 2019 at the University of Washington. We discuss his influential work on machine learning systems, starting with the development of XGBoost,an optimized distributed gradient boosting library that has had an enormous impact in the field. We also cover his contributions to deep learning frameworks like MXNet and machine learning compilation with TVM, and connect these to modern generative AI.
- Episode notes: www.wellecks.com/thesisreview/episode48.html
- Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter
- Follow Tianqi Chen on Twitter (@tqchenml)
- Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
[31] Jay McClelland - Preliminary Letter Identification in the Perception of Words and Nonwords
The Thesis Review
1 hour 33 minutes 51 seconds
4 years ago
[31] Jay McClelland - Preliminary Letter Identification in the Perception of Words and Nonwords
Jay McClelland is a Professor in the Psychology Department and Director of the Center for Mind, Brain, Computation and Technology at Stanford. His research addresses a broad range of topics in cognitive science and cognitive neuroscience, including Parallel Distributed Processing (PDP).
Jay's PhD thesis is titled "Preliminary Letter Identification in the Perception of Words and Nonwords", which he completed in 1975 at University of Pennsylvania.
We discuss his work in the thesis on the word superiority effect, how it led to the Integrated Activation model, the path to Parallel Distributed Processing and the connectionist revolution, and distributed vs rule-based and symbolic approaches to modeling human cognition and artificial intelligence.
- Episode notes: https://cs.nyu.edu/~welleck/episode31.html
- Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter
- Find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html
- Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview
The Thesis Review
Tianqi Chen is an Assistant Professor in the Machine Learning Department and Computer Science Department at Carnegie Mellon University and the Chief Technologist of OctoML. His research focuses on the intersection of machine learning and systems.
Tianqi's PhD thesis is titled "Scalable and Intelligent Learning Systems," which he completed in 2019 at the University of Washington. We discuss his influential work on machine learning systems, starting with the development of XGBoost,an optimized distributed gradient boosting library that has had an enormous impact in the field. We also cover his contributions to deep learning frameworks like MXNet and machine learning compilation with TVM, and connect these to modern generative AI.
- Episode notes: www.wellecks.com/thesisreview/episode48.html
- Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter
- Follow Tianqi Chen on Twitter (@tqchenml)
- Support The Thesis Review at www.patreon.com/thesisreview or www.buymeacoffee.com/thesisreview