Diese Lehrveranstaltung soll Studierenden die grundlegenden theoretischen und praktischen Aspekte der Algorithmentechnik vermitteln. Es werden generelle Methoden zum Entwurf und der Analyse von Algorithmen für grundlegende algorithmische Probleme vermittelt sowie die Grundzüge allgemeiner algorithmischer Methoden wie Approximationsalgorithmen, Lineare Programmierung, Randomisierte Algorithmen, Parallele Algorithmen und parametrisierte Algorithmen behandelt.
Literaturhinweise:
- K. Mehlhorn, P. Sanders: Algorithms and Data Structures - The Basic Toolbox
- K. Mehlhorn, S. Naeher: The LEDA Platform of Combinatorial and Geometric Computing Topic: Algorithm Engineering, Flows, Geometrie
- R. K. Ahuja, T. L. Magnanti, J.B. Orlin: Network Flows
- M. de Berg, M. van Kreveld, M. Overmars, O. C. Schwarzkopf: Computational Geometry: Algorithms and Applications
- G. Navarro: Compact Data Structures "A Practical Approach", Cambridge University Press
- R. Niedermeier: Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.
Dozenten: Prof. Dr. Peter Sanders, Dr. Christian Schulz, Dr. Simon Gog, M.Sc. Michael Axtmann | Karlsruher Institut für Technologie (KIT), Institut für Theoretische Informatik
Vorlesungsaufzeichnung: KIT | WEBCAST: http://webcast.kit.edu
All content for Algorithmen 2, WS2016/17, Vorlesung is the property of Karlsruher Institut für Technologie (KIT) and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Diese Lehrveranstaltung soll Studierenden die grundlegenden theoretischen und praktischen Aspekte der Algorithmentechnik vermitteln. Es werden generelle Methoden zum Entwurf und der Analyse von Algorithmen für grundlegende algorithmische Probleme vermittelt sowie die Grundzüge allgemeiner algorithmischer Methoden wie Approximationsalgorithmen, Lineare Programmierung, Randomisierte Algorithmen, Parallele Algorithmen und parametrisierte Algorithmen behandelt.
Literaturhinweise:
- K. Mehlhorn, P. Sanders: Algorithms and Data Structures - The Basic Toolbox
- K. Mehlhorn, S. Naeher: The LEDA Platform of Combinatorial and Geometric Computing Topic: Algorithm Engineering, Flows, Geometrie
- R. K. Ahuja, T. L. Magnanti, J.B. Orlin: Network Flows
- M. de Berg, M. van Kreveld, M. Overmars, O. C. Schwarzkopf: Computational Geometry: Algorithms and Applications
- G. Navarro: Compact Data Structures "A Practical Approach", Cambridge University Press
- R. Niedermeier: Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.
Dozenten: Prof. Dr. Peter Sanders, Dr. Christian Schulz, Dr. Simon Gog, M.Sc. Michael Axtmann | Karlsruher Institut für Technologie (KIT), Institut für Theoretische Informatik
Vorlesungsaufzeichnung: KIT | WEBCAST: http://webcast.kit.edu
18 |
0:00:00 Starten
0:00:07 Stringology (Zeichenkettenalgorithmen)
0:00:59 Top 10 query completion (Suchvolumina)
0:04:18 Weitere Anwendungen
0:10:19 Naives Pattern Matching
0:17:29 Besserer Algorithmus
0:27:53 Fallanalyse Palindrome
0:41:09 Berechnung der Verschiebetabelle
1:00:26 Multi Key Quicksort for Strings
1:11:00 Matching von k pattern gegen einen Text der Länge n
1:12:46 Suffix Tree und Suffix Array
07 |
0:00:00 Starten
0:00:57 1 Algorithm Engineering
0:05:04 (Caricatured) Traditional View: Algorithm Theory
0:07:43 Gaps Between Theory & Practice
0:12:14 Algorithmics as Algorithm Engineering
0:18:43 Bits of History
0:25:30 Realistic Models
0:28:11 Design
0:30:03 Analysis
0:31:05 Implementation
0:33:47 Experiments
0:37:14 Algorithm Libraries - Challenges
0:42:58 Problem Instances
0:43:45 Example: Sorting Benchmark (Indy)
0:45:41 GraySort
0:45:41 JouleSort
0:46:46 Applications tha ""Change the World""
0:51:07 Conclusion: Algorithm Engineering <--> Algorithm Theory
0:52:28 More On Experimental Methodology
0:53:24 Quality Criteria
0:58:20 Not Here but Important
1:00:47 The Starting Point
1:01:46 The Process
1:07:31 Of Risks and Opportunities
1:08:36 Übung 4
1:08:41 Themen
1:09:47 Starke Zusammenhangskomponenten
1:10:39 SCC (Wiederholung)
Diese Lehrveranstaltung soll Studierenden die grundlegenden theoretischen und praktischen Aspekte der Algorithmentechnik vermitteln. Es werden generelle Methoden zum Entwurf und der Analyse von Algorithmen für grundlegende algorithmische Probleme vermittelt sowie die Grundzüge allgemeiner algorithmischer Methoden wie Approximationsalgorithmen, Lineare Programmierung, Randomisierte Algorithmen, Parallele Algorithmen und parametrisierte Algorithmen behandelt.
Literaturhinweise:
- K. Mehlhorn, P. Sanders: Algorithms and Data Structures - The Basic Toolbox
- K. Mehlhorn, S. Naeher: The LEDA Platform of Combinatorial and Geometric Computing Topic: Algorithm Engineering, Flows, Geometrie
- R. K. Ahuja, T. L. Magnanti, J.B. Orlin: Network Flows
- M. de Berg, M. van Kreveld, M. Overmars, O. C. Schwarzkopf: Computational Geometry: Algorithms and Applications
- G. Navarro: Compact Data Structures "A Practical Approach", Cambridge University Press
- R. Niedermeier: Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.
Dozenten: Prof. Dr. Peter Sanders, Dr. Christian Schulz, Dr. Simon Gog, M.Sc. Michael Axtmann | Karlsruher Institut für Technologie (KIT), Institut für Theoretische Informatik
Vorlesungsaufzeichnung: KIT | WEBCAST: http://webcast.kit.edu