BUFFALO, NY – January 8, 2026 – A new #review was #published in Oncotarget (Volume 17) on January 3, 2026, titled “COVID vaccination and post-infection cancer signals: Evaluating patterns and potential biological mechanisms.”
Led by Charlotte Kuperwasser from Tufts University School of Medicine and Oncotarget Editor-in-Chief Wafik S. El-Deiry from The Warren Alpert Medical School of Brown University, the review examines published reports describing cancers that appeared after COVID-19 vaccination or SARS-CoV-2 infection. The authors analyze patterns across case reports, small patient series, and large population studies, and explain why these observations are relevant for cancer research and long-term public health monitoring.
Cancer remains a major global health concern, and understanding factors that may influence its behavior is important. The review covers reports published between January 2020 and October 2025 that describe cancer diagnoses, recurrence, or unusually rapid disease progression following vaccination or infection. In total, 69 publications were reviewed. Sixty-six article reports, representing more than 300 patients across multiple countries and cancer types; 2 retrospective investigations; and one longitudinal study spanning the pre-pandemic through post-pandemic periods.
The review explores how immune responses triggered by infection or vaccination could, in some individuals, influence existing cancer cells or previously dormant disease. Many article reports involved blood cancers such as lymphomas and leukemias and solid tumors, including breast, lung, pancreatic, brain, and skin cancers. Some cases described rapid disease progression or cancers appearing near vaccine injection sites or nearby lymph nodes. These observations are described as hypothesis-generating rather than evidence of risk.
In addition to individual case reports, the review examines findings from large population studies in South Korea, Italy, and the United States military. These studies assessed cancer trends over time in vaccinated populations and reported modest associations for certain cancer types. The authors note that these findings are limited by short follow-up periods and potential reporting and detection biases, emphasizing the need for longer-term data.
The authors also discuss possible biological explanations for the reported patterns, including temporary immune changes, inflammation, or altered immune surveillance that could affect tumor behavior in people with undetected or controlled cancer. They place these observations within the broader context of how viral infections can interact with cancer biology.
“Establishing causality between SARS-CoV-2 infection, COVID-19 vaccination, and cancer requires a level of evidence far beyond temporal association.”
Overall, the review identifies significant gaps in current knowledge about possible associations between COVID-19 vaccination and cancer, including limited long-term cancer surveillance, lack of molecular data, and an incomplete understanding of individual susceptibility. The authors emphasize the need for carefully designed studies that integrate clinical, epidemiologic, and biological evidence. Finally, they conclude that examining these reported patterns is important for advancing cancer research and supporting informed public health discussions.
DOI - https://doi.org/10.18632/oncotarget.28824
Correspondence to - Charlotte Kuperwasser - charlotte.kuperwasser@tufts.edu, and Wafik S. El-Deiry - wafik@brown.edu
Abstract video - https://www.youtube.com/watch?v=5_-AaojOoR8
To learn more about Oncotarget, please visit https://www.oncotarget.com.
MEDIA@IMPACTJOURNALS.COM
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers
with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
BUFFALO, NY – January 8, 2026 – A new #review was #published in Oncotarget (Volume 17) on January 3, 2026, titled “COVID vaccination and post-infection cancer signals: Evaluating patterns and potential biological mechanisms.”
Led by Charlotte Kuperwasser from Tufts University School of Medicine and Oncotarget Editor-in-Chief Wafik S. El-Deiry from The Warren Alpert Medical School of Brown University, the review examines published reports describing cancers that appeared after COVID-19 vaccination or SARS-CoV-2 infection. The authors analyze patterns across case reports, small patient series, and large population studies, and explain why these observations are relevant for cancer research and long-term public health monitoring.
Cancer remains a major global health concern, and understanding factors that may influence its behavior is important. The review covers reports published between January 2020 and October 2025 that describe cancer diagnoses, recurrence, or unusually rapid disease progression following vaccination or infection. In total, 69 publications were reviewed. Sixty-six article reports, representing more than 300 patients across multiple countries and cancer types; 2 retrospective investigations; and one longitudinal study spanning the pre-pandemic through post-pandemic periods.
The review explores how immune responses triggered by infection or vaccination could, in some individuals, influence existing cancer cells or previously dormant disease. Many article reports involved blood cancers such as lymphomas and leukemias and solid tumors, including breast, lung, pancreatic, brain, and skin cancers. Some cases described rapid disease progression or cancers appearing near vaccine injection sites or nearby lymph nodes. These observations are described as hypothesis-generating rather than evidence of risk.
In addition to individual case reports, the review examines findings from large population studies in South Korea, Italy, and the United States military. These studies assessed cancer trends over time in vaccinated populations and reported modest associations for certain cancer types. The authors note that these findings are limited by short follow-up periods and potential reporting and detection biases, emphasizing the need for longer-term data.
The authors also discuss possible biological explanations for the reported patterns, including temporary immune changes, inflammation, or altered immune surveillance that could affect tumor behavior in people with undetected or controlled cancer. They place these observations within the broader context of how viral infections can interact with cancer biology.
“Establishing causality between SARS-CoV-2 infection, COVID-19 vaccination, and cancer requires a level of evidence far beyond temporal association.”
Overall, the review identifies significant gaps in current knowledge about possible associations between COVID-19 vaccination and cancer, including limited long-term cancer surveillance, lack of molecular data, and an incomplete understanding of individual susceptibility. The authors emphasize the need for carefully designed studies that integrate clinical, epidemiologic, and biological evidence. Finally, they conclude that examining these reported patterns is important for advancing cancer research and supporting informed public health discussions.
DOI - https://doi.org/10.18632/oncotarget.28824
Correspondence to - Charlotte Kuperwasser - charlotte.kuperwasser@tufts.edu, and Wafik S. El-Deiry - wafik@brown.edu
Abstract video - https://www.youtube.com/watch?v=5_-AaojOoR8
To learn more about Oncotarget, please visit https://www.oncotarget.com.
MEDIA@IMPACTJOURNALS.COM
Folate Receptor Beta Found in Pediatric Tumors May Improve Fluorescence-Guided Cancer Surgery
Oncotarget
3 minutes 33 seconds
2 months ago
Folate Receptor Beta Found in Pediatric Tumors May Improve Fluorescence-Guided Cancer Surgery
BUFFALO, NY – October 20, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on October 16, 2025, titled “Widespread folate receptor expression in pediatric and adolescent solid tumors – opportunity for intraoperative visualization with the novel fluorescent agent pafolacianine.”
In this study, led by first author Ashley C. Dodd from Ann & Robert H. Lurie Children’s Hospital and corresponding author Timothy B. Lautz from the same institution and Northwestern University Feinberg School of Medicine, researchers discovered that folate receptor beta (FRβ) is widely expressed in various pediatric and adolescent solid tumors. This finding highlights FRβ as a promising target for improving the accuracy of tumor surgery using a fluorescent imaging agent known as pafolacianine.
Pediatric cancers are often challenging to remove completely during surgery, particularly when tumors spread or form small metastases. Fluorescence-guided surgery is a method that helps surgeons better identify tumors during operations using special imaging dyes. However, commonly used dyes such as indocyanine green are not tumor-specific and rely on general features of blood vessel permeability, limiting their precision.
In this study, researchers investigated the potential of pafolacianine, a next-generation dye that targets folate receptors, for pediatric use. Folate receptors are proteins commonly found on the surface of cancer cells. Pafolacianine is already FDA-approved for adults with ovarian and lung cancers due to its ability to bind these receptors and highlight tumors during surgery.
The research team analyzed tissue samples from 13 young patients diagnosed with various cancers, including Wilms tumor, osteosarcoma, synovial sarcoma, rhabdomyosarcoma, Ewing sarcoma, and neuroblastoma. The results showed that FRα was predominantly absent, whereas FRβ was present in 100% of the tumor samples. Notably, FRβ appeared both on the tumor cells and in the surrounding tumor microenvironment but showed little to no expression in normal tissue, making it an excellent candidate for targeted imaging.
“In this study, we performed immunohistochemistry staining on slides obtained from a range of pediatric patients with solid tumors.”
This consistent expression of FRβ in pediatric tumors is a significant and novel finding. Earlier studies primarily linked FRβ to immune cells called tumor-associated macrophages. This study reveals that FRβ is also expressed directly on tumor tissue, which could help surgeons better distinguish cancer from healthy tissue during procedures.
Based on these results, the team has launched a clinical trial to evaluate pafolacianine in children undergoing surgery for metastatic lung tumors. If successful, this method could make pediatric cancer surgery safer and more effective.
Overall, this study suggests that targeting FRβ with pafolacianine could serve as a tumor-agnostic imaging strategy, applicable across a wide range of pediatric solid tumors. This represents a potential advancement in real-time surgical imaging and a step forward in pediatric cancer care.
DOI - https://doi.org/10.18632/oncotarget.28772
Correspondence to - Timothy B. Lautz - TLautz@luriechildrens.org
Abstract video - https://www.youtube.com/watch?v=0its0QkOcwM
Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/
To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us:
Facebook - https://www.facebook.com/Oncotarget/
X - https://twitter.com/oncotarget
Instagram - https://www.instagram.com/oncotargetjrnl/
YouTube - https://www.youtube.com/@OncotargetJournal
LinkedIn - https://www.linkedin.com/company/oncotarget
Pinterest - https://www.pinterest.com/oncotarget/
Reddit - https://www.reddit.com/user/Oncotarget/
Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh
MEDIA@IMPACTJOURNALS.COM
Oncotarget
BUFFALO, NY – January 8, 2026 – A new #review was #published in Oncotarget (Volume 17) on January 3, 2026, titled “COVID vaccination and post-infection cancer signals: Evaluating patterns and potential biological mechanisms.”
Led by Charlotte Kuperwasser from Tufts University School of Medicine and Oncotarget Editor-in-Chief Wafik S. El-Deiry from The Warren Alpert Medical School of Brown University, the review examines published reports describing cancers that appeared after COVID-19 vaccination or SARS-CoV-2 infection. The authors analyze patterns across case reports, small patient series, and large population studies, and explain why these observations are relevant for cancer research and long-term public health monitoring.
Cancer remains a major global health concern, and understanding factors that may influence its behavior is important. The review covers reports published between January 2020 and October 2025 that describe cancer diagnoses, recurrence, or unusually rapid disease progression following vaccination or infection. In total, 69 publications were reviewed. Sixty-six article reports, representing more than 300 patients across multiple countries and cancer types; 2 retrospective investigations; and one longitudinal study spanning the pre-pandemic through post-pandemic periods.
The review explores how immune responses triggered by infection or vaccination could, in some individuals, influence existing cancer cells or previously dormant disease. Many article reports involved blood cancers such as lymphomas and leukemias and solid tumors, including breast, lung, pancreatic, brain, and skin cancers. Some cases described rapid disease progression or cancers appearing near vaccine injection sites or nearby lymph nodes. These observations are described as hypothesis-generating rather than evidence of risk.
In addition to individual case reports, the review examines findings from large population studies in South Korea, Italy, and the United States military. These studies assessed cancer trends over time in vaccinated populations and reported modest associations for certain cancer types. The authors note that these findings are limited by short follow-up periods and potential reporting and detection biases, emphasizing the need for longer-term data.
The authors also discuss possible biological explanations for the reported patterns, including temporary immune changes, inflammation, or altered immune surveillance that could affect tumor behavior in people with undetected or controlled cancer. They place these observations within the broader context of how viral infections can interact with cancer biology.
“Establishing causality between SARS-CoV-2 infection, COVID-19 vaccination, and cancer requires a level of evidence far beyond temporal association.”
Overall, the review identifies significant gaps in current knowledge about possible associations between COVID-19 vaccination and cancer, including limited long-term cancer surveillance, lack of molecular data, and an incomplete understanding of individual susceptibility. The authors emphasize the need for carefully designed studies that integrate clinical, epidemiologic, and biological evidence. Finally, they conclude that examining these reported patterns is important for advancing cancer research and supporting informed public health discussions.
DOI - https://doi.org/10.18632/oncotarget.28824
Correspondence to - Charlotte Kuperwasser - charlotte.kuperwasser@tufts.edu, and Wafik S. El-Deiry - wafik@brown.edu
Abstract video - https://www.youtube.com/watch?v=5_-AaojOoR8
To learn more about Oncotarget, please visit https://www.oncotarget.com.
MEDIA@IMPACTJOURNALS.COM