Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
TV & Film
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/84/ef/0e/84ef0e89-af5f-476b-5046-ff3d99a35ac3/mza_4786384072714074999.jpg/600x600bb.jpg
Oncotarget
Oncotarget Podcast
500 episodes
6 days ago
Cancer is a disease caused by the uncontrolled growth of cells that escape the body’s natural defenses. One way cancer protects itself is by taking advantage of certain immune cells called regulatory T cells, or Tregs. Normally, Tregs help prevent autoimmune diseases by controlling the immune system. But inside tumors, they behave differently. Instead of defending the body, they suppress the immune cells that could attack the cancer. Many cancer treatments aim to activate the immune system to fight tumors more effectively. However, the presence of Tregs within the tumor makes this difficult. These cells act like bodyguards for the cancer, blocking the immune response that might otherwise slow or stop tumor growth. Researchers have tried to eliminate Tregs by targeting a protein called CD25, found on their surface. However, earlier efforts often failed because these treatments also interfere with interleukin-2 (IL-2), a molecule that is essential for other immune cells to function. Blocking IL-2 weakens the entire immune response, limiting the treatment’s effectiveness. To overcome this challenge, scientists recently developed a new antibody called 2B010. This study, titled “A novel anti-human CD25 mAb with preferential reactivity to activated T regulatory cells depletes them from the tumor microenvironment,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/11/19/new-antibody-removes-tregs-to-boost-immune-response-against-cancer/ Paper DOI - https://doi.org/10.18632/oncotarget.28752 Correspondence to - Ethan M. Shevach - eshevach@Niaid.NIH.gov Abstract video - https://www.youtube.com/watch?v=2NJcGsI7WXA Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28752 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Treg, CD25, TME, mAb, GVHD To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
RSS
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Cancer is a disease caused by the uncontrolled growth of cells that escape the body’s natural defenses. One way cancer protects itself is by taking advantage of certain immune cells called regulatory T cells, or Tregs. Normally, Tregs help prevent autoimmune diseases by controlling the immune system. But inside tumors, they behave differently. Instead of defending the body, they suppress the immune cells that could attack the cancer. Many cancer treatments aim to activate the immune system to fight tumors more effectively. However, the presence of Tregs within the tumor makes this difficult. These cells act like bodyguards for the cancer, blocking the immune response that might otherwise slow or stop tumor growth. Researchers have tried to eliminate Tregs by targeting a protein called CD25, found on their surface. However, earlier efforts often failed because these treatments also interfere with interleukin-2 (IL-2), a molecule that is essential for other immune cells to function. Blocking IL-2 weakens the entire immune response, limiting the treatment’s effectiveness. To overcome this challenge, scientists recently developed a new antibody called 2B010. This study, titled “A novel anti-human CD25 mAb with preferential reactivity to activated T regulatory cells depletes them from the tumor microenvironment,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/11/19/new-antibody-removes-tregs-to-boost-immune-response-against-cancer/ Paper DOI - https://doi.org/10.18632/oncotarget.28752 Correspondence to - Ethan M. Shevach - eshevach@Niaid.NIH.gov Abstract video - https://www.youtube.com/watch?v=2NJcGsI7WXA Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28752 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Treg, CD25, TME, mAb, GVHD To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
Episodes (20/500)
Oncotarget
New Antibody Removes Tregs to Boost Immune Response Against Cancer
Cancer is a disease caused by the uncontrolled growth of cells that escape the body’s natural defenses. One way cancer protects itself is by taking advantage of certain immune cells called regulatory T cells, or Tregs. Normally, Tregs help prevent autoimmune diseases by controlling the immune system. But inside tumors, they behave differently. Instead of defending the body, they suppress the immune cells that could attack the cancer. Many cancer treatments aim to activate the immune system to fight tumors more effectively. However, the presence of Tregs within the tumor makes this difficult. These cells act like bodyguards for the cancer, blocking the immune response that might otherwise slow or stop tumor growth. Researchers have tried to eliminate Tregs by targeting a protein called CD25, found on their surface. However, earlier efforts often failed because these treatments also interfere with interleukin-2 (IL-2), a molecule that is essential for other immune cells to function. Blocking IL-2 weakens the entire immune response, limiting the treatment’s effectiveness. To overcome this challenge, scientists recently developed a new antibody called 2B010. This study, titled “A novel anti-human CD25 mAb with preferential reactivity to activated T regulatory cells depletes them from the tumor microenvironment,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/11/19/new-antibody-removes-tregs-to-boost-immune-response-against-cancer/ Paper DOI - https://doi.org/10.18632/oncotarget.28752 Correspondence to - Ethan M. Shevach - eshevach@Niaid.NIH.gov Abstract video - https://www.youtube.com/watch?v=2NJcGsI7WXA Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28752 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Treg, CD25, TME, mAb, GVHD To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
6 days ago
4 minutes 31 seconds

Oncotarget
Probiotic Bifidobacterium May Boost Cancer Treatment and Suppress Tumors
BUFFALO, NY – November 18, 2025 – A new #review was #published in Oncotarget (Volume 16) on November 14, 2025, titled “Mechanism of anticancer action of bifidobacterium: Insights from gut microbiota.” This review, led by first author Hoang Do and correspondent author Ashakumary Lakshmikuttyamma from Thomas Jefferson University, explores how bifidobacterium, a common probiotic found in the gut, may contribute to cancer prevention and therapy. By analyzing existing studies, the authors highlight the growing importance of gut health in cancer treatment and shed light on how bifidobacterium could complement standard cancer therapies. Bifidobacterium is widely known for promoting digestive health and is often included in fermented foods and dietary supplements. However, emerging evidence suggests it may also play a broader role in immune regulation and cancer defense. The review explains how certain strains of bifidobacterium may enhance the effectiveness of chemotherapy, radiation, and immunotherapy in cancers such as breast, lung, colorectal, and gastric cancers. According to the review, bifidobacterium influences cancer outcomes through several biological mechanisms. It helps regulate immune function by reducing inflammation and supporting the activity of immune cells that target tumors. For instance, strains like B. longum and B. breve have been shown to lower levels of harmful inflammatory markers and boost anti-inflammatory responses. These changes can make cancer treatments more effective while also reducing side effects. “Presence of Bifidobacterium breve in gut microbiota extended the median progression-free survival of NSCLC patients.” The review also discusses how bifidobacterium helps detoxify the body by breaking down cancer-causing compounds and limiting their ability to damage cells. In preclinical studies, the probiotic reduced the activity of enzymes that produce carcinogens and helped in converting food-based substances into cancer-fighting agents. Some strains were even found to suppress genes that promote tumor growth and increase molecules that trigger cancer cell death. The authors emphasize that diet plays a critical role in supporting the growth of bifidobacterium. Foods rich in dietary fiber, especially those containing inulin and oligosaccharides like garlic, onions, or leeks, can help increase its levels in the gut. This suggests that simple dietary changes could not only improve gut health but also support cancer prevention and treatment strategies. Although the review presents compelling evidence, the authors stress the need for more clinical trials to determine how different strains of bifidobacterium affect specific types of cancer. Personalized approaches may be necessary to match the right probiotic strains with individual treatment plans. As research continues to uncover the link between gut microbes and cancer, bifidobacterium stands out as a promising natural ally that could enhance the body’s defenses and improve cancer treatment outcomes. DOI - https://doi.org/10.18632/oncotarget.28779 Correspondence to - Ashakumary Lakshmikuttyamma - axl025@jefferson.edu Abstract video - https://www.youtube.com/watch?v=KTWJDAN15lY Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28779 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 week ago
3 minutes 29 seconds

Oncotarget
Clinical Trial Participants Call for More Inclusive, Patient-Centered Cancer Research
BUFFALO, NY – November 17, 2025 – A new #research perspective was #published in Oncotarget (Volume 16) on November 14, 2025, titled “A personal perspective of patient-centred clinical trials.” In this perspective, led by corresponding author Jia Liu of The Kinghorn Cancer Centre, St Vincent’s Hospital, the University of New South Wales, and the Garvan Institute of Medical Research, three early-phase clinical trial participants — Trevor Tyne, Elizabeth Ivimey, and Leanne Duggan — reflect on their personal experiences with experimental cancer treatments. Their stories offer a unique perspective on the patient journey through early-phase trials and emphasize the need to design clinical research that prioritizes patients’ needs, dignity, and lived realities. The authors highlight both the life-changing opportunities that trials can provide and the systemic barriers that still prevent many patients from participating. This perspective captures a turning point in how early-phase trials are viewed. Once considered a last resort, these trials are now increasingly offered earlier in treatment, especially with the rise of biomarker-guided therapies. In this context, the patient experience has become critical. The authors outline key benefits of participation, including access to novel therapies, ongoing medical monitoring, emotional support, and a strong sense of purpose in contributing to future medical advancements. However, they also point out significant challenges, such as restrictive eligibility criteria, high financial and logistical burdens, and communication gaps between patients and trial staff. “While no trial guarantees success, the level of support, access to innovative therapies, and sense of contribution to medical progress can be profoundly meaningful.” Each narrative provides insight into the clinical trial experience. One patient explains how living with a visual impairment required tailored accessibility support throughout the trial process Another shares how genomic testing led to targeted treatment after standard options failed. Despite their different diagnoses and circumstances, all three stories reflect resilience, hope, and a shared call for trial designs that better reflect the realities of diverse patients. To address these issues, the authors propose a number of improvements to trial design and delivery. These include expanding eligibility criteria, offering financial and logistical assistance, improving communication training for research staff, and introducing dedicated trial navigators to help guide patients through complex processes. They also focus on the importance of involving patient advocates in trial design and ensuring smoother transitions for patients moving between treatment centers. While early-phase trials focus on safety and effectiveness, the authors argue they must also be guided by core values like ethics and patient empowerment. This perspective serves as a reminder that the future of cancer research depends not only on scientific innovation, but on an honest partnership between patients and the research community. By sharing these real-world experiences, the article encourages a broader conversation about how to make clinical trials more responsive to the people they are designed to serve. DOI - https://doi.org/10.18632/oncotarget.28776 Correspondence to - Jia Liu - jia.liu@svha.org.au Abstract video - https://www.youtube.com/watch?v=2CCGN78n8ug To learn more about Oncotarget, visit https://www.oncotarget.com: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 week ago
3 minutes 44 seconds

Oncotarget
Lower LRIG1 Expression Linked to Aggressive Gliomas
BUFFALO, NY - November 12, 2025 – A new #research paper was #published in Oncotarget (Volume 16) on November 6, 2025, titled “LRIG1-3 in gliomas: LRIG1 protein expression decreased in higher grade gliomas.” In this study by Marlene Happe, Saskia Kuhl, Lukas Görtz, Roland Goldbrunner and Marco Timmer, from the University of Cologne, researchers found that the LRIG1 protein, which may help suppress tumors, is present at lower levels in more aggressive gliomas, a type of brain tumor. The findings suggest that LRIG1 could serve as a useful marker for tumor severity and potentially as a target for future therapies. Gliomas are the most common malignant brain tumors in adults and carry a poor prognosis, particularly in their most severe form, glioblastoma. This study investigated three related proteins: LRIG1, LRIG2, and LRIG3, which are involved in regulating cell growth signals. While LRIG1 and LRIG3 have shown tumor-suppressing effects in previous studies, LRIG2 is thought to support tumor growth. The researchers analyzed tumor samples from patients to understand how these proteins behave across different glioma grades and how they respond to chemotherapy. The results showed that LRIG1 protein levels decline significantly as tumor grade increases. Low-grade gliomas displayed much higher LRIG1 expression than high-grade tumors. Among high-grade tumors, primary glioblastomas had the lowest levels of LRIG1. Interestingly, secondary glioblastomas, which typically develop from lower-grade tumors, had higher levels of LRIG1 than primary glioblastomas. This difference may contribute to their relatively better clinical outcomes. These results highlight LRIG1’s potential role in slowing tumor progression. In contrast, LRIG2 showed a more complex pattern. While its gene expression was higher in lower-grade tumors, the actual protein levels were slightly elevated in higher-grade ones, which are more aggressive. This mismatch suggests that processes occurring after gene transcription may influence how much LRIG2 protein is produced. “However, our data on LRIG2 indicate that its role in glioma may be more complex than previously thought, warranting further investigation.” Concerning LRIG3, it was found in higher amounts in glioma tissue compared to surrounding healthy tissue. Its expression was particularly high in low-grade tumors. However, chemotherapy did not consistently affect LRIG3 levels, and results varied depending on tumor type and treatment status. Overall, the study suggests that members of the LRIG protein family, especially LRIG1, could serve as important biomarkers to distinguish between glioma types and grades. Although chemotherapy did not significantly change their expression in most cases, these proteins have high potential as diagnostic tools or therapeutic targets. Further research is needed to better understand their roles in glioma development and treatment response. DOI - https://doi.org/10.18632/oncotarget.28775 Correspondence to - Marco Timmer - marco.timmer@uk-koeln.de Abstract video - https://www.youtube.com/watch?v=ZHsKLBEyBbM Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28775 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, oncology, glioma, glioblastoma, LRIG1, LRIG2, LRIG3 To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 week ago
3 minutes 45 seconds

Oncotarget
Eco-Friendly Nanoparticles Improve Cidofovir’s Anticancer and Antiviral Effects
BUFFALO, NY - November 10, 2025 – A new #research paper was #published in Oncotarget (Volume 16) on November 6, 2025, titled “Anti-DNA virus agent cidofovir - loaded green synthesized cerium oxide nanoparticles (Nanoceria): Nucleic acids (DNA and RNA) binding affinity and cytotoxicity effects.” In this study, led by Nahid Shahabadi from Razi University in Kermanshah, researchers developed an environmentally friendly approach to enhance the performance of cidofovir, a drug used to treat infections caused by DNA viruses. The work responds to the growing need for therapies that are safer, more effective, and better targeted. The research team developed a new compound by loading cidofovir onto green-synthesized cerium oxide nanoparticles (nanoceria), known as CDV-CeO2 NPs. This method combines the drug’s antiviral and anticancer properties with the biological activity of nanoceria, which is known for its antioxidant, anti-inflammatory, and tumor-targeting effects. To avoid toxic chemicals, the nanoparticles were synthesized using quince fruit peel extract, making the process more sustainable and suitable for medical applications. Laboratory experiments showed that the CDV-CeO2 nanoparticles were significantly more effective at killing breast cancer cells than either cidofovir or cerium oxide nanoparticles alone. At the highest tested concentration, the new compound destroyed more than 97% of cancer cells, compared to 72% with cidofovir alone and 50% with nanoparticles alone. These findings suggest that the combined formulation enhances anticancer activity and may allow for lower drug doses with fewer side effects. To understand how these nanoparticles interact with genetic material, the team studied their binding to DNA and RNA, two key molecules involved in cancer development and viral replication. CDV-CeO2 nanoparticles showed strong binding affinity through two mechanisms: groove binding, which fits into natural curves of the genetic molecule strands, and intercalation, which inserts between base pairs. The nanoparticles formed stable complexes that responded to temperature, indicating reliable interactions in biological systems. “The novelty of this work lies in the innovative green synthesis method, the dual-functional therapeutic application, and the enhanced biological activity of the CDV-CeO2 NPs, which collectively position these nanoparticles as promising candidates for future cancer and antiviral therapies.” This research presents a potential new strategy for improving drug targeting and delivery using green nanotechnology. The approach could lead to more effective treatments for diseases such as breast cancer and infections caused by human papillomavirus (HPV) and other DNA viruses. However, further research, including animal and clinical studies, is needed to confirm the safety and long-term effectiveness of this treatment. Overall, this study represents a significant step toward combining natural materials with nanomedicine to create more efficient therapies. If supported by future research, CDV-CeO2 nanoparticles could offer a new generation of dual-action treatments. DOI - https://doi.org/10.18632/oncotarget.28774 Correspondence to - Nahid Shahabadi - nahidshahabadi@yahoo.com Abstract video - https://www.youtube.com/watch?v=Il9CsfgO2mU Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us on social media: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
2 weeks ago
4 minutes 5 seconds

Oncotarget
How Low Oxygen Shields Prostate Cancer from Ferroptosis Therapies
Prostate cancer is one of the most common cancers in men. While treatment options have improved, advanced stages of the disease remain difficult to manage. One promising approach involves a process called ferroptosis. This is a type of programmed cell death that relies on iron and lipid oxidation to kill cancer cells by damaging specific fats in their outer membrane. These fats are especially vulnerable in environments with normal oxygen levels. However, many prostate tumors grow in low-oxygen areas of the body, a condition known as hypoxia, where ferroptosis becomes less effective. A recent study, titled “Hypoxia induced lipid droplet accumulation promotes resistance to ferroptosis in prostate cancer,” and published on Oncotarget (Volume 16), explores how oxygen-poor environments help prostate cancer cells resist treatment and what strategies could help overcome this resistance. Full blog - https://www.oncotarget.org/2025/11/06/how-low-oxygen-shields-prostate-cancer-from-ferroptosis-therapies/ Paper DOI - https://doi.org/10.18632/oncotarget.28750 Correspondence to - Noel A. Warfel - warfelna@arizona.edu, and Shailender S. Chauhan - shailenderc@arizona.edu Abstract video - https://www.youtube.com/watch?v=xFypDT4ALmc Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28750 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, hypoxia, lipid droplets, ferroptosis, resistance, prostate To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
2 weeks ago
3 minutes 49 seconds

Oncotarget
Genetic Study Identifies Potential Diagnostic Marker for Rare Blood Cancer BPDCN
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare blood cancer that primarily affects older adults. One of the key challenges in diagnosing and treating BPDCN is that it closely resembles other forms of leukemia in both appearance and behavior. This overlap often leads to delays or uncertainty in diagnosis, especially since currently there is no single, reliable marker that clearly distinguishes BPDCN from related diseases. To address this issue, researchers from the City of Hope Comprehensive Cancer Center investigated the genetic profile of BPDCN. Their study, titled “Genetic characteristics of blastic plasmacytoid dendritic cell neoplasm: A single institution experience,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/10/22/genetic-study-identifies-potential-diagnostic-marker-for-rare-blood-cancer-bpdcn/ Paper DOI - https://doi.org/10.18632/oncotarget.28742 Correspondence to - Michelle Afkhami - mafkhami@coh.org Abstract video - https://www.youtube.com/watch?v=wUjr3uU3onI Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28742 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Blastic plasmacytoid dendritic cell neoplasm (BPDCN), Next-generation sequencing (NGS), CCDC50 To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 month ago
3 minutes 50 seconds

Oncotarget
Folate Receptor Beta Found in Pediatric Tumors May Improve Fluorescence-Guided Cancer Surgery
BUFFALO, NY – October 20, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on October 16, 2025, titled “Widespread folate receptor expression in pediatric and adolescent solid tumors – opportunity for intraoperative visualization with the novel fluorescent agent pafolacianine.” In this study, led by first author Ashley C. Dodd from Ann & Robert H. Lurie Children’s Hospital and corresponding author Timothy B. Lautz from the same institution and Northwestern University Feinberg School of Medicine, researchers discovered that folate receptor beta (FRβ) is widely expressed in various pediatric and adolescent solid tumors. This finding highlights FRβ as a promising target for improving the accuracy of tumor surgery using a fluorescent imaging agent known as pafolacianine. Pediatric cancers are often challenging to remove completely during surgery, particularly when tumors spread or form small metastases. Fluorescence-guided surgery is a method that helps surgeons better identify tumors during operations using special imaging dyes. However, commonly used dyes such as indocyanine green are not tumor-specific and rely on general features of blood vessel permeability, limiting their precision. In this study, researchers investigated the potential of pafolacianine, a next-generation dye that targets folate receptors, for pediatric use. Folate receptors are proteins commonly found on the surface of cancer cells. Pafolacianine is already FDA-approved for adults with ovarian and lung cancers due to its ability to bind these receptors and highlight tumors during surgery. The research team analyzed tissue samples from 13 young patients diagnosed with various cancers, including Wilms tumor, osteosarcoma, synovial sarcoma, rhabdomyosarcoma, Ewing sarcoma, and neuroblastoma. The results showed that FRα was predominantly absent, whereas FRβ was present in 100% of the tumor samples. Notably, FRβ appeared both on the tumor cells and in the surrounding tumor microenvironment but showed little to no expression in normal tissue, making it an excellent candidate for targeted imaging. “In this study, we performed immunohistochemistry staining on slides obtained from a range of pediatric patients with solid tumors.” This consistent expression of FRβ in pediatric tumors is a significant and novel finding. Earlier studies primarily linked FRβ to immune cells called tumor-associated macrophages. This study reveals that FRβ is also expressed directly on tumor tissue, which could help surgeons better distinguish cancer from healthy tissue during procedures. Based on these results, the team has launched a clinical trial to evaluate pafolacianine in children undergoing surgery for metastatic lung tumors. If successful, this method could make pediatric cancer surgery safer and more effective. Overall, this study suggests that targeting FRβ with pafolacianine could serve as a tumor-agnostic imaging strategy, applicable across a wide range of pediatric solid tumors. This represents a potential advancement in real-time surgical imaging and a step forward in pediatric cancer care. DOI - https://doi.org/10.18632/oncotarget.28772 Correspondence to - Timothy B. Lautz - TLautz@luriechildrens.org Abstract video - https://www.youtube.com/watch?v=0its0QkOcwM Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 month ago
3 minutes 33 seconds

Oncotarget
New Radiofrequency Therapy Slows Glioblastoma Growth and Targets Tumor Stem Cells
BUFFALO, NY – October 14, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on October 13, 2025, titled “Treatment of glioblastoma with tumor-specific amplitude-modulated radiofrequency electromagnetic fields.” The study, led by Hugo Jimenez from Wayne State University School of Medicine, Karmanos Cancer Institute, introduces a novel treatment approach for glioblastoma, an aggressive and often treatment-resistant brain cancer. The findings open a new potential path for patients who currently have limited therapeutic options. The approach uses a device developed by TheraBionic that delivers extremely low levels of radiofrequency electromagnetic fields, tuned to frequencies associated with glioblastoma. In laboratory experiments, this therapy significantly slowed the growth of multiple glioblastoma cell lines. It was especially effective against tumor stem cells, which are known to resist standard treatments and drive cancer reappearance. Researchers also found that the treatment’s effects depend on a calcium channel in tumor cells known as Cav3.2 (CACNA1H). When this channel was blocked, the therapy lost its effectiveness, highlighting the channel’s essential role in how tumor cells respond to the signal. The therapy also disrupted the process of cell division by interfering with the mitotic spindle, a structure critical for cell replication. This disruption was associated with changes in the expression of genes that regulate cell division, particularly those involved in the “Mitotic Roles of Polo-Like Kinase” pathway. These effects were specific to tumor-targeted frequencies, as non-matching signals had no measurable impact. The study also includes data from two patients with difficult-to-treat brain tumors who received the therapy through compassionate use. One patient with recurrent glioblastoma showed signs of clinical and radiographic improvement after one month of treatment. Another patient with oligodendroglioma tolerated the therapy well and had stable disease during follow-up imaging. Neither patient experienced serious side effects, further supporting the safety of the therapy. “There was evidence of clinical and radiological benefit in a 38-year-old patient with recurrent GB and evidence of safety and feasibility in a 47-year-old patient with oligodendroglioma.” This is the first study to demonstrate that tumor-specific radiofrequency therapy can suppress both tumor growth and cancer stem cells in glioblastoma. Similar results had previously been observed in liver and breast cancers. These findings contribute to the growing body of evidence supporting a new class of systemic, non-toxic cancer therapies. Further clinical trials will be crucial to confirm these results and fully assess the potential of this approach for treating brain cancer. DOI - https://doi.org/10.18632/oncotarget.28770 Correspondence to - Hugo Jimenez - hugo.jimenez@wayne.edu Abstract video - https://www.youtube.com/watch?v=uxYnWcNKYfg Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28770 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, oncology, amplitude-modulated radiofrequency electromagnetic fields, glioblastoma, TheraBionic, CACNA1H, Cav3.2 To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 month ago
2 minutes 43 seconds

Oncotarget
New Insights into HER2-Mutated Non-Small Cell Lung Cancer in Brazil
Lung cancer remains one of the leading causes of cancer-related deaths worldwide. Although precision medicine has improved outcomes for many patients, certain rare genetic mutations are still poorly understood, particularly in regions with limited access to genomic testing. Such mutations involve the HER2 gene, better known for its role in breast cancer but also implicated in a small subset of lung cancers. HER2 mutations are found in approximately 2–4% of non-small cell lung cancer (NSCLC) cases and create unique challenges. These tumors can vary significantly in how they appear under a microscope and in how they respond to treatment. Adding to the complexity, most diagnostic and treatment guidelines are based on research from high-income countries, which may not reflect the genetic diversity seen in other parts of the world. To help close this knowledge gap, researchers in Northeastern Brazil conducted one of the first detailed investigations into HER2-mutated NSCLC in Latin America. Their study, recently published in Volume 16 of Oncotarget, reveals a complex and often overlooked form of the disease, highlighting the need for broader access to targeted therapies in underserved populations. Full blog - https://www.oncotarget.org/2025/10/08/new-insights-into-her2-mutated-non-small-cell-lung-cancer-in-brazil/ Paper DOI - https://doi.org/10.18632/oncotarget.28737 Correspondence to - Fabio Tavora - stellacpak@outlook.com Abstract video - https://www.youtube.com/watch?v=hr5R9iDBFFI Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28737 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, HER2 mutation, NSCLC, lung cancer, targeted therapy, genomic profiling To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 month ago
5 minutes 1 second

Oncotarget
Engineered Bacterial Therapy Activates Immune Response in Cancer Preclinical Studies
BUFFALO, NY – October 8, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on October 6, 2025, titled “ACTM-838, a novel systemically delivered bacterial immunotherapy that enriches in solid tumors and delivers IL-15/IL-15Rα and STING payloads to engage innate and adaptive immunity in the TME and enable a durable anti-tumor immune response.” In this study, led by first author Kyle R. Cron and corresponding author Akshata R. Udyavar, researchers from Actym Therapeutics developed a new form of bacterial immunotherapy called ACTM-838. This treatment safely delivers immune-activating proteins directly to solid tumors. The approach may offer a new option for cancer patients whose solid tumors are resistant to current immunotherapies. Solid tumors often suppress the immune system, making it difficult for treatments like immune checkpoint inhibitors to work effectively. ACTM-838 was designed to overcome this challenge by targeting phagocytic immune cells within the tumor microenvironment (TME). Once inside the tumor, the therapy delivers two immune-stimulating components: IL-15/IL-15Rα and a modified version of STING. Both are known to activate the body’s innate and adaptive immune responses. This combination of immune-stimulating proteins helps shift the TME from immune-suppressive to immune-permissive, enabling the body’s natural defenses to fight the cancer. “STACT is a modular, genetically engineered live attenuated S. Typhimurium bacterial platform that enables tissue-specific localization and cell-targeted delivery of large, multiplexed payloads via systemic administration.” The study highlights how ACTM-838, built on a specially modified strain of Salmonella Typhimurium, safely targets tumors and avoids healthy tissue after intravenous injection. This targeted delivery reduces the risk of side effects while ensuring the immune-boosting agents reach their intended location. Importantly, ACTM-838 also showed significantly reduced inflammatory toxicity compared to its parent bacterial strain, which had previously presented challenges in clinical use. In preclinical tests, ACTM-838 shrank tumors and prevented their recurrence after treatment. Mice that were cured of tumors resisted re-injection with cancer cells, suggesting the development of long-lasting immune memory. The therapy also showed strong synergy with anti-PD1 drugs, a widely used class of cancer treatments, further improving outcomes in both treatment-resistant and responsive tumor models. Researchers also found that ACTM-838 changed the composition of immune cells within the tumor. It increased beneficial cells like cytotoxic T-cells and antigen-presenting macrophages, while reducing suppressive cell types such as regulatory T-cells and exhausted T-cells. These effects were confirmed through genetic analysis and cellular studies, pointing to a broad and coordinated immune response. This study offers proof-of-concept that live bacterial therapy can safely and effectively deliver gene-based immune modulators directly to tumors. With ACTM-838 now being tested in a Phase I clinical trial, the findings offer a new direction for cancer treatment strategies that activate the body’s own immune system, particularly in difficult-to-treat cases where other therapies fail. DOI - https://doi.org/10.18632/oncotarget.28769 Correspondence to - Akshata R. Udyavar - akshata.udyavar@pfizer.com Abstract video - https://www.youtube.com/watch?v=fr5OR3tvC_I Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
1 month ago
3 minutes 57 seconds

Oncotarget
Wafik S. El-Deiry Chairs 2025 WIN Symposium in Collaboration with APM in Philadelphia
BUFFALO, NY - October 1, 2025 – Oncotarget is proud to announce that its Editor-in-Chief, Wafik S. El-Deiry, MD, PhD, FACP, will chair the WIN Symposium as the Oncology Track of the Advancing Precision Medicine (APM) Annual Conference held October 3–4, 2025, at the Pennsylvania Convention Center in Philadelphia. The WIN Consortium annual symposium featured as the Oncology Track of the APM Annual Conference 2025 unites global leaders in oncology, translational science, and precision medicine. This year’s program features keynote lectures, multi-track sessions– WIN Symposium, Multi-Omics Integration and Precision Medicine Outside of Oncology– and networking opportunities designed to accelerate the translation of research into clinical practice. Highlights include: --A keynote at opening of the WIN Symposium in Philadelphia by William G. Kaelin, Jr., MD — 2019 Nobel Laureate. --Other luminaries in Oncology are speaking, including AACR President Lillian Siu, MD and AACR President-Elect Keith Flaherty, MD along with internationally recognized leaders in precision oncology. --A world-class precision oncology molecular tumor board and oral presentations from the most competitive abstracts are part of the program. --Multi-omics and disease-specific tracks spanning oncology, neurology, cardiovascular disease, rare disease, and infectious disease. --Opportunities for collaboration among scientists, clinicians, industry innovators, and policymakers. Registration is still open. Attendance is free for students, academic/government/non-profit participants, healthcare providers, and investors. The event provides CME credits. For full program details, visit the APM Annual Conference website. About WIN Consortium: WIN Consortium is a non-profit association headquartered in France. WIN was the first consortium that assembled all stakeholders of cancer care, from academia, industry, and patient advocates to work together across the globe. The WIN network assembles 34 world-class academic medical centers, industries, research organizations and patient advocates spanning 18 countries and 5 continents, aligned to launch trials to bolster Precision Oncology across the world. It was also the first organization to launch a N-of-One study using transcriptomics in addition to genomics to inform therapeutic choice in the WINTHER study. WIN is the organizer of the WIN symposia in Precision Oncology. To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh
Show more...
1 month ago
3 minutes 50 seconds

Oncotarget
Precision Oncology in Metastatic Colorectal Cancer: A Real-World Case Study
Colorectal cancer is one of the most common—and deadliest—cancers worldwide. Once it spreads and reaches the metastatic stage, treatment becomes far more difficult. Tumors can also behave very differently from one patient to another, especially after multiple rounds of therapy. Precision oncology is helping to overcome these challenges by enabling clinicians to analyze each tumor’s unique genetic profile and tailor treatment accordingly. This approach was recently highlighted in a case study published in Volume 16 of Oncotarget. The report detailed how a 62-year-old man with advanced colorectal cancer received a highly personalized treatment plan, developed by an international panel of experts, after completing all standard treatment options. Full blog - https://www.oncotarget.org/2025/09/24/precision-oncology-in-metastatic-colorectal-cancer-a-real-world-case-study/ Paper DOI - https://doi.org/10.18632/oncotarget.28744 Correspondence to - Shai Magidi - shai.magidi@winconsortium.org Abstract video - https://www.youtube.com/watch?v=uWDtWNgpK7A Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28744 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, precision oncology, molecular tumor board, colorectal carcinoma, cancer management To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
2 months ago
4 minutes 41 seconds

Oncotarget
Loss of Trp53 Gene Promotes Tumor Growth and Immune Suppression in Ovarian Cancer
BUFFALO, NY - September 24, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on September 22, 2025, titled “Loss of Trp53 results in a hypoactive T cell phenotype accompanied by reduced pro-inflammatory signaling in a syngeneic orthotopic mouse model of ovarian high-grade serous carcinoma.” In this study, led by first author Jacob Haagsma and corresponding author Trevor G. Shepherd from the Verspeeten Family Cancer Centre and Western University, Canada, researchers investigated how the loss of Trp53 – a critical tumor suppressor gene – affects immune responses in ovarian cancer. The team found that deleting Trp53 led to more aggressive tumor growth and a weaker immune response. These findings help explain why some ovarian tumors may be resistant to immunotherapy and point to new ways to improve treatment. High-grade serous ovarian carcinoma (HGSC) is a deadly cancer that is often diagnosed at a late stage. Immunotherapy, which enhances the body’s immune system to fight cancer, has shown limited effectiveness in treating this type of cancer. To better understand why, the researchers developed a mouse model that closely mimics human HGSC. They injected ovarian epithelial cells, with and without Trp53, into the fallopian tubes, the origin site of most ovarian cancers. “In this study, we developed a syngeneic model reflecting both the site of origin and the genotype of early HGSC disease by deleting Trp53 in mouse oviductal epithelial (OVE) cells.” Mice injected with cells lacking Trp53 developed faster-growing and more invasive tumors, reflecting how the disease typically progresses in humans. These tumors also had fewer active T cells, which are immune cells responsible for attacking cancer. Moreover, the T cells that were present appeared less capable of responding to the tumor, creating an immune environment that allowed cancer to grow uncontrolled. Further analysis revealed that tumor cells without Trp53 had reduced activity in genes related to inflammation. These changes were associated with lower levels of key proteins that normally help immune cells detect and attack tumor cells. When the researchers collected tumor cells from the abdominal fluid of the mice—a condition that simulates advanced-stage disease—they observed even lower immune signaling than before. This suggests that as the tumor spreads, it becomes better at evading the immune system. This study highlights how early genetic mutations can shape the interaction between tumors and the immune system. In particular, the loss of Trp53 appears to trigger a chain of events that weakens immune surveillance and accelerates tumor progression. These findings emphasize the need to consider both genetic mutations and the tumor environment when designing immunotherapies for ovarian cancer. Understanding how genes like Trp53 influence immune behavior may lead to more effective treatments and help identify which patients are most likely to benefit from immunotherapy. DOI - https://doi.org/10.18632/oncotarget.28768 Correspondence to - Trevor G. Shepherd - tshephe6@uwo.ca Abstract video - https://www.youtube.com/watch?v=WFQw0psuC3M Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28768 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
2 months ago
3 minutes 24 seconds

Oncotarget
Immunotherapy Response in Pancreatic Cancer: What a New Study Reveals
Immunotherapy is not usually effective against pancreatic cancer (PC), but a new study published in Oncotarget (Volume 16, 2025) highlights rare cases where it did help. These examples, though uncommon, may offer valuable insights for future treatment. Pancreatic Cancer and Immunotherapy Pancreatic cancer is often diagnosed at an advanced stage, which limits treatment options and contributes to its poor prognosis. While chemotherapy remains the standard treatment, it usually offers only modest benefits in terms of survival. Immunotherapy—an approach that activates the immune system to fight cancer—has been effective in other cancers but has shown limited success in PC. This is largely due to the tumor’s ability to suppress immune responses and create an environment that protects it from attack. Currently, these drugs are only approved for a small subset of patients whose tumors have a specific genetic feature called high microsatellite instability (MSI-high), found in just 1 to 2 percent of cases. The Study: Pancreatic Cancer Immunotherapy Responders The study, titled “Exceptional responders to immunotherapy in pancreatic cancer: A multi-institutional case series of a rare occurrence,” was led by first author Kavin Sugumar and corresponding author Jordan M. Winter, from University Hospitals Seidman Cancer Center. The researchers examined medical records from 14 patients with pancreatic ductal adenocarcinoma (PDAC) who had responded unexpectedly well to immune checkpoint inhibitors—drugs that help reactivate immune cells to attack cancer. The drugs included PD-1 inhibitors such as pembrolizumab and nivolumab, CTLA-4 inhibitors like ipilimumab, and agents targeting tumor-associated macrophages. To find these rare cases, the research team contacted 471 oncologists from 91 major U.S. cancer centers between 2020 and 2021. Full blog - https://www.oncotarget.org/2025/09/11/immunotherapy-response-in-pancreatic-cancer-what-a-new-study-reveals/ Paper DOI - https://doi.org/10.18632/oncotarget.28739 Correspondence to - Jordan M. Winter - jordan.winter@UHHospitals.org Abstract video - https://www.youtube.com/watch?v=VeWTcuVmqgM Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28739 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, pancreatic adenocarcinoma, immunotherapy, exceptional responders, microsatellite instability, survival To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
2 months ago
4 minutes 59 seconds

Oncotarget
Blocking Protein Control Pathway Slows Rhabdomyosarcoma Growth in Mice
BUFFALO, NY – August 29, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on August 29, 2025, titled “In vivo manipulation of the protein homeostasis network in rhabdomyosarcoma.” In this study led by first author Kristen Kwong and corresponding author Amit J. Sabnis from the Department of Pediatrics, Division of Oncology, University of California San Francisco, researchers discovered that disrupting the protein quality control system in cancer cells slows tumor growth in rhabdomyosarcoma (RMS), the most common pediatric soft tissue cancer. This finding points to a new strategy for treating high-risk childhood cancers that often resist current therapies. Rhabdomyosarcoma is a rare and aggressive cancer that primarily affects children and adolescents. Standard treatments like chemotherapy and radiation often have limited long-term success in high-risk cases. This study explored a different approach: targeting the cellular machinery that maintains protein quality, known as the proteostasis network. Cancer cells rely heavily on this system to survive stress caused by rapid growth and genetic instability. “To examine whether MAL3-101 or more drug-like proteostasis inhibitors represent a new therapeutic strategy for RMS, we screened proteostasis components that might recapitulate the effects of MAL3-101 in vivo.” The researchers first used a compound called MAL3-101 to disrupt protein control in RMS cells. They then identified which parts of the protein quality system were affected. Based on those findings, they searched for more drug-like compounds that could target the same pathways. They focused on a protein called p97, which plays a critical role in removing damaged or misfolded proteins. When they blocked p97 using a drug called CB-5083, the cancer cells could no longer manage internal stress and began to self-destruct. In both laboratory models and mice implanted with human RMS tumors, the treatment significantly slowed or stopped tumor growth. The drug triggered a stress response in the cells known as the unfolded protein response, which can lead to either recovery or programmed cell death. However, not all tumors responded the same way. Some resisted the treatment by activating a backup system called autophagy, which allows cells to recycle parts of themselves under stress. By comparing tumors that responded well to those that did not, the researchers found that higher autophagy activity could serve as a warning sign for resistance. This insight may help identify which patients are more likely to benefit from therapies that target protein quality control. While the results are promising, the drug’s effectiveness depended on the tumor’s genetic profile and how it handled stress. Combining p97 inhibition with other treatments or blocking alternative survival pathways like autophagy may improve outcomes. The researchers also noted the importance of developing safer and more targeted drugs to reduce side effects. This study opens new possibilities for personalized cancer treatment, particularly for children with aggressive or relapsed RMS. By weakening the systems that cancer cells depend on to survive, rather than only using toxic treatments to kill them, scientists aim to develop more effective and less harmful therapies for young patients. DOI - https://doi.org/10.18632/oncotarget.28764 Correspondence to - Amit J. Sabnis - amit.sabnis@ucsf.edu Video short - https://www.youtube.com/watch?v=YsdffTkXNRQ To learn more about Oncotarget, visit https://www.oncotarget.com. Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
2 months ago
3 minutes 58 seconds

Oncotarget
Behind the Study: R-spondin Family Roles in Metastatic Prostate Cancer
Aiden Deacon from the University of Minnesota-Twin Cities, Minneapolis, discusses a research paper he co-authored that was published in Volume 16 of Oncotarget, titled “Dissecting the functional differences and clinical features of R-spondin family members in metastatic prostate cancer.” DOI - https://doi.org/10.18632/oncotarget.28758 Correspondence to - Justin Hwang - jhwang@umn.edu Video interview - https://www.youtube.com/watch?v=OXKhWWU1gnY Abstract This study investigates the R-spondin family of genes (RSPO1/2/3/4), a group of secreted proteins that act as Wnt regulators, and their subsequent role in advanced prostate cancer (PC). When evaluating transcriptomic data from primary and metastatic PC patients, we found that alterations in RSPO2 were more prevalent than in other RSPO family members or Wnt-regulating genes APC and CTNNB1. Further, we found that RSPO2 alterations in PCs were significantly associated with worse disease-free survival. Through our in silico modeling, RSPO2 exhibited strong positive associations with genes regulating epithelial-mesenchymal transition (EMT) and double-negative prostate cancer (DNPC), but had negative correlations with androgen receptor (AR) and AR-associated genes. Furthermore, 3D modeling of RSPO2 revealed structural differences between itself and other RSPOs. In cell lines, RSPO2 overexpression caused up-regulation of EMT pathways, including EMT-regulatory transcription factors ZEB1, ZEB2, and TWIST1. Conversely, this was not observed when CTNNB1 was overexpressed in the same models. These findings highlight that, in PC, RSPO2 functions as a unique member of the R-spondin family by promoting genes and signaling pathways associated with aggressive PC, and RSPO2 amplifications are associated with poor outcomes in PC patients. Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28758 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, RSPO2, prostate cancer, Wnt signaling, genomics, therapeutics About Oncotarget Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science. Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science). To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
3 months ago
7 minutes 6 seconds

Oncotarget
Amivantamab Monotherapy in Rare EGFR-Mutated Advanced NSCLC
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality. While the development of targeted therapies has improved outcomes for many patients with EGFR-mutated NSCLC, those with rare EGFR variants often face limited treatment options, especially when the disease involves the central nervous system (CNS). A recent research paper, titled “Durable complete response in leptomeningeal disease of EGFR mutated non-small cell lung cancer to amivantamab, an EGFR-MET receptor bispecific antibody, after progressing on osimertinib” published in Volume 16 of Oncotarget, describes a patient with NSCLC harboring two uncommon EGFR mutations—G719A and A289V—who experienced a prolonged and clinically significant response to amivantamab monotherapy, after prior treatments had failed. Full blog - https://www.oncotarget.org/2025/08/26/amivantamab-monotherapy-in-rare-egfr-mutated-advanced-nsclc/ Paper DOI - https://doi.org/10.18632/oncotarget.28730 Correspondence to - Young Kwang Chae - young.chae@northwestern.edu Video short - https://www.youtube.com/watch?v=UEiCz834a8c Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28730 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, amivantamab, monotherapy, rare EGFR mutation, NSCLC, leptomeningeal disease About Oncotarget Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science. Oncotarget is indexed and archived by PubMed/Medline, PubMed Central, Scopus, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science). To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
3 months ago
5 minutes 27 seconds

Oncotarget
Aramchol Boosts Regorafenib Effectiveness in Gastrointestinal Tumors
BUFFALO, NY – August 19, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on August 19, 2025, titled “The SCD1 inhibitor aramchol interacts with regorafenib to kill GI tumor cells in vitro and in vivo.” In this study, led by first authors Laurence Booth and Michael R. Booth, along with corresponding author Paul Dent from Virginia Commonwealth University, researchers investigated how aramchol, a drug originally developed for liver disease, works with the cancer drug regorafenib in gastrointestinal (GI) tumor cells. They found that the combination is effective, especially in tumor cells with a specific genetic variant. The combined approach offers a potential new strategy for treating liver and colon cancers. Gastrointestinal cancers, such as liver and colon cancer, are serious global health challenges. Regorafenib, already approved for cancer treatment, can have limited impact and frequently causes side effects. Aramchol, a drug developed to treat fatty liver disease, affects how cancer cells process fats and energy. In this study, researchers tested whether combining these two drugs could improve GI cancer treatment, both in cells and mouse models. The results showed that the drug combination killed liver and colorectal cancer cells more effectively than either drug alone. In animal models, mice with human liver tumors had slower tumor growth, without showing signs of weight loss or other toxicity. The researchers also found that aramchol and regorafenib work together to block important survival pathways inside cancer cells. This combination was especially effective in cells with a genetic variant called ATG16L1 T300, which is more common in people of African ancestry. The treatment triggered stress responses in the cancer cells and disrupted key proteins required for survival. It also activated autophagy, a natural recycling process that clears out damaged parts, eventually leading to cancer cell death. “Aramchol interacted with the multi-kinase inhibitors sorafenib, regorafenib or lenvatinib, to kill GI tumor cells, with regorafenib exhibiting the greatest effect.” Aramchol is currently in clinical trials for fatty liver disease and has a well-established safety profile, while regorafenib is already FDA-approved for cancer treatment. Together, their combination could advance fast into clinical testing for patients with GI cancers. However, researchers note that additional studies are needed to support the launch of early-phase clinical trials. Altogether, this study may offer a more effective and less toxic alternative to current treatments for GI cancers. It also highlights the role of genetic variants in shaping treatment response, suggesting that future therapies could be more precisely tailored to each patient’s unique genetic profile. DOI - https://doi.org/10.18632/oncotarget.28762 Correspondence to - Paul Dent - paul.dent@vcuhealth.org Video short - https://www.youtube.com/watch?v=5saAqsqxi-Q Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28762 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, macroautophagy, flux; ER stress, aramchol, regorafenib To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
3 months ago
3 minutes 35 seconds

Oncotarget
FDA-Approved MI Cancer Seek Test Enhances Tumor Profiling for Precision Oncology
BUFFALO, NY – August 15, 2025 – A new #research paper was #published in Volume 16 of Oncotarget on August 13, 2025, titled “Clinical and analytical validation of MI Cancer Seek®, a companion diagnostic whole exome and whole transcriptome sequencing-based comprehensive molecular profiling assay.” In this study, first authors Valeriy Domenyuk and Kasey Benson, along with corresponding author David Spetzler from Caris Life Sciences in Irving, Texas, introduce MI Cancer Seek, an FDA-approved test designed to deliver comprehensive tumor profiling. MI Cancer Seek demonstrated strong concordance with other FDA-approved companion diagnostics and serves as a powerful tool to guide treatment decisions in both adult and pediatric cancer patients. Cancer remains one of the most complex and diverse diseases to treat. With many targeted therapies currently FDA-approved, selecting the right one for a specific patient requires detailed genetic insights. MI Cancer Seek addresses this need by analyzing both DNA and RNA from a single tumor sample. The tool identifies key biomarkers linked to FDA-approved treatments for several major cancers, including breast, lung, colon, melanoma, and endometrial cancers. One of the most significant strengths of MI Cancer Seek is its ability to deliver accurate and reliable results from minimal tissue input (50 ng). Even when analyzing formalin-fixed paraffin-embedded samples, which are widely used but often degraded, the test maintained high levels of accuracy. It successfully detected important genetic alterations such as PIK3CA, EGFR, BRAF, and KRAS/NRAS mutations and measured tumor mutational burden (TMB) and microsatellite instability (MSI), both of which are key indicators for immunotherapy response. In clinical comparisons, the test achieved over 97% agreement with other FDA-approved diagnostic tools, confirming its reliability in detecting critical biomarkers. Notably, it showed near-perfect accuracy in identifying MSI status in colorectal and endometrial cancers. The researchers also demonstrated that the test maintains precision across different lab conditions and varying DNA input levels, confirming its robustness for routine clinical use. Beyond its role as a companion diagnostic, MI Cancer Seek incorporates additional features developed under its predecessor, MI Tumor Seek Hybrid. These include detection of homologous recombination deficiency, structural variants, and cancer-related viruses. It also includes advanced tools such as the Genomic Probability Score for identifying the tissue of origin in cancers of unknown primary, as well as a gene signature to guide first-line chemotherapy in colorectal cancer. “One limitation to be considered is the low PPA for ERBB2 CNA detection.” By offering deeper genetic insights from a single, small sample, MI Cancer Seek has the potential to streamline diagnostics, reduce testing costs, and connect patients to effective therapies more quickly. As precision medicine continues to expand, this assay stands out as a comprehensive and efficient solution for meeting the evolving needs of modern oncology. DOI - https://doi.org/10.18632/oncotarget.28761 Correspondence to - David Spetzler - dspetzler@carisls.com Video short - https://www.youtube.com/watch?v=D4hd2FxCYY8 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
3 months ago
4 minutes 13 seconds

Oncotarget
Cancer is a disease caused by the uncontrolled growth of cells that escape the body’s natural defenses. One way cancer protects itself is by taking advantage of certain immune cells called regulatory T cells, or Tregs. Normally, Tregs help prevent autoimmune diseases by controlling the immune system. But inside tumors, they behave differently. Instead of defending the body, they suppress the immune cells that could attack the cancer. Many cancer treatments aim to activate the immune system to fight tumors more effectively. However, the presence of Tregs within the tumor makes this difficult. These cells act like bodyguards for the cancer, blocking the immune response that might otherwise slow or stop tumor growth. Researchers have tried to eliminate Tregs by targeting a protein called CD25, found on their surface. However, earlier efforts often failed because these treatments also interfere with interleukin-2 (IL-2), a molecule that is essential for other immune cells to function. Blocking IL-2 weakens the entire immune response, limiting the treatment’s effectiveness. To overcome this challenge, scientists recently developed a new antibody called 2B010. This study, titled “A novel anti-human CD25 mAb with preferential reactivity to activated T regulatory cells depletes them from the tumor microenvironment,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/11/19/new-antibody-removes-tregs-to-boost-immune-response-against-cancer/ Paper DOI - https://doi.org/10.18632/oncotarget.28752 Correspondence to - Ethan M. Shevach - eshevach@Niaid.NIH.gov Abstract video - https://www.youtube.com/watch?v=2NJcGsI7WXA Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28752 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Treg, CD25, TME, mAb, GVHD To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM