Home
Categories
EXPLORE
True Crime
Comedy
Society & Culture
Business
Sports
TV & Film
Technology
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/84/ef/0e/84ef0e89-af5f-476b-5046-ff3d99a35ac3/mza_4786384072714074999.jpg/600x600bb.jpg
Oncotarget
Oncotarget Podcast
500 episodes
6 days ago
Cancer is a disease caused by the uncontrolled growth of cells that escape the body’s natural defenses. One way cancer protects itself is by taking advantage of certain immune cells called regulatory T cells, or Tregs. Normally, Tregs help prevent autoimmune diseases by controlling the immune system. But inside tumors, they behave differently. Instead of defending the body, they suppress the immune cells that could attack the cancer. Many cancer treatments aim to activate the immune system to fight tumors more effectively. However, the presence of Tregs within the tumor makes this difficult. These cells act like bodyguards for the cancer, blocking the immune response that might otherwise slow or stop tumor growth. Researchers have tried to eliminate Tregs by targeting a protein called CD25, found on their surface. However, earlier efforts often failed because these treatments also interfere with interleukin-2 (IL-2), a molecule that is essential for other immune cells to function. Blocking IL-2 weakens the entire immune response, limiting the treatment’s effectiveness. To overcome this challenge, scientists recently developed a new antibody called 2B010. This study, titled “A novel anti-human CD25 mAb with preferential reactivity to activated T regulatory cells depletes them from the tumor microenvironment,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/11/19/new-antibody-removes-tregs-to-boost-immune-response-against-cancer/ Paper DOI - https://doi.org/10.18632/oncotarget.28752 Correspondence to - Ethan M. Shevach - eshevach@Niaid.NIH.gov Abstract video - https://www.youtube.com/watch?v=2NJcGsI7WXA Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28752 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Treg, CD25, TME, mAb, GVHD To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
RSS
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
Cancer is a disease caused by the uncontrolled growth of cells that escape the body’s natural defenses. One way cancer protects itself is by taking advantage of certain immune cells called regulatory T cells, or Tregs. Normally, Tregs help prevent autoimmune diseases by controlling the immune system. But inside tumors, they behave differently. Instead of defending the body, they suppress the immune cells that could attack the cancer. Many cancer treatments aim to activate the immune system to fight tumors more effectively. However, the presence of Tregs within the tumor makes this difficult. These cells act like bodyguards for the cancer, blocking the immune response that might otherwise slow or stop tumor growth. Researchers have tried to eliminate Tregs by targeting a protein called CD25, found on their surface. However, earlier efforts often failed because these treatments also interfere with interleukin-2 (IL-2), a molecule that is essential for other immune cells to function. Blocking IL-2 weakens the entire immune response, limiting the treatment’s effectiveness. To overcome this challenge, scientists recently developed a new antibody called 2B010. This study, titled “A novel anti-human CD25 mAb with preferential reactivity to activated T regulatory cells depletes them from the tumor microenvironment,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/11/19/new-antibody-removes-tregs-to-boost-immune-response-against-cancer/ Paper DOI - https://doi.org/10.18632/oncotarget.28752 Correspondence to - Ethan M. Shevach - eshevach@Niaid.NIH.gov Abstract video - https://www.youtube.com/watch?v=2NJcGsI7WXA Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28752 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Treg, CD25, TME, mAb, GVHD To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Show more...
Science
https://i1.sndcdn.com/artworks-H5hSWi6gvF6Vtxg9-zqZhLg-t3000x3000.png
Lower LRIG1 Expression Linked to Aggressive Gliomas
Oncotarget
3 minutes 45 seconds
1 week ago
Lower LRIG1 Expression Linked to Aggressive Gliomas
BUFFALO, NY - November 12, 2025 – A new #research paper was #published in Oncotarget (Volume 16) on November 6, 2025, titled “LRIG1-3 in gliomas: LRIG1 protein expression decreased in higher grade gliomas.” In this study by Marlene Happe, Saskia Kuhl, Lukas Görtz, Roland Goldbrunner and Marco Timmer, from the University of Cologne, researchers found that the LRIG1 protein, which may help suppress tumors, is present at lower levels in more aggressive gliomas, a type of brain tumor. The findings suggest that LRIG1 could serve as a useful marker for tumor severity and potentially as a target for future therapies. Gliomas are the most common malignant brain tumors in adults and carry a poor prognosis, particularly in their most severe form, glioblastoma. This study investigated three related proteins: LRIG1, LRIG2, and LRIG3, which are involved in regulating cell growth signals. While LRIG1 and LRIG3 have shown tumor-suppressing effects in previous studies, LRIG2 is thought to support tumor growth. The researchers analyzed tumor samples from patients to understand how these proteins behave across different glioma grades and how they respond to chemotherapy. The results showed that LRIG1 protein levels decline significantly as tumor grade increases. Low-grade gliomas displayed much higher LRIG1 expression than high-grade tumors. Among high-grade tumors, primary glioblastomas had the lowest levels of LRIG1. Interestingly, secondary glioblastomas, which typically develop from lower-grade tumors, had higher levels of LRIG1 than primary glioblastomas. This difference may contribute to their relatively better clinical outcomes. These results highlight LRIG1’s potential role in slowing tumor progression. In contrast, LRIG2 showed a more complex pattern. While its gene expression was higher in lower-grade tumors, the actual protein levels were slightly elevated in higher-grade ones, which are more aggressive. This mismatch suggests that processes occurring after gene transcription may influence how much LRIG2 protein is produced. “However, our data on LRIG2 indicate that its role in glioma may be more complex than previously thought, warranting further investigation.” Concerning LRIG3, it was found in higher amounts in glioma tissue compared to surrounding healthy tissue. Its expression was particularly high in low-grade tumors. However, chemotherapy did not consistently affect LRIG3 levels, and results varied depending on tumor type and treatment status. Overall, the study suggests that members of the LRIG protein family, especially LRIG1, could serve as important biomarkers to distinguish between glioma types and grades. Although chemotherapy did not significantly change their expression in most cases, these proteins have high potential as diagnostic tools or therapeutic targets. Further research is needed to better understand their roles in glioma development and treatment response. DOI - https://doi.org/10.18632/oncotarget.28775 Correspondence to - Marco Timmer - marco.timmer@uk-koeln.de Abstract video - https://www.youtube.com/watch?v=ZHsKLBEyBbM Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28775 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, oncology, glioma, glioblastoma, LRIG1, LRIG2, LRIG3 To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Oncotarget
Cancer is a disease caused by the uncontrolled growth of cells that escape the body’s natural defenses. One way cancer protects itself is by taking advantage of certain immune cells called regulatory T cells, or Tregs. Normally, Tregs help prevent autoimmune diseases by controlling the immune system. But inside tumors, they behave differently. Instead of defending the body, they suppress the immune cells that could attack the cancer. Many cancer treatments aim to activate the immune system to fight tumors more effectively. However, the presence of Tregs within the tumor makes this difficult. These cells act like bodyguards for the cancer, blocking the immune response that might otherwise slow or stop tumor growth. Researchers have tried to eliminate Tregs by targeting a protein called CD25, found on their surface. However, earlier efforts often failed because these treatments also interfere with interleukin-2 (IL-2), a molecule that is essential for other immune cells to function. Blocking IL-2 weakens the entire immune response, limiting the treatment’s effectiveness. To overcome this challenge, scientists recently developed a new antibody called 2B010. This study, titled “A novel anti-human CD25 mAb with preferential reactivity to activated T regulatory cells depletes them from the tumor microenvironment,” was published in Oncotarget (Volume 16). Full blog - https://www.oncotarget.org/2025/11/19/new-antibody-removes-tregs-to-boost-immune-response-against-cancer/ Paper DOI - https://doi.org/10.18632/oncotarget.28752 Correspondence to - Ethan M. Shevach - eshevach@Niaid.NIH.gov Abstract video - https://www.youtube.com/watch?v=2NJcGsI7WXA Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28752 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, Treg, CD25, TME, mAb, GVHD To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM