Home
Categories
EXPLORE
True Crime
Comedy
Business
Sports
Society & Culture
Health & Fitness
TV & Film
About Us
Contact Us
Copyright
© 2024 PodJoint
00:00 / 00:00
Sign in

or

Don't have an account?
Sign up
Forgot password
https://is1-ssl.mzstatic.com/image/thumb/Podcasts125/v4/84/ef/0e/84ef0e89-af5f-476b-5046-ff3d99a35ac3/mza_4786384072714074999.jpg/600x600bb.jpg
Oncotarget
Oncotarget Podcast
500 episodes
4 days ago
BUFFALO, NY – January 8, 2026 – A new #review was #published in Oncotarget (Volume 17) on January 3, 2026, titled “COVID vaccination and post-infection cancer signals: Evaluating patterns and potential biological mechanisms.” Led by Charlotte Kuperwasser from Tufts University School of Medicine and Oncotarget Editor-in-Chief Wafik S. El-Deiry from The Warren Alpert Medical School of Brown University, the review examines published reports describing cancers that appeared after COVID-19 vaccination or SARS-CoV-2 infection. The authors analyze patterns across case reports, small patient series, and large population studies, and explain why these observations are relevant for cancer research and long-term public health monitoring. Cancer remains a major global health concern, and understanding factors that may influence its behavior is important. The review covers reports published between January 2020 and October 2025 that describe cancer diagnoses, recurrence, or unusually rapid disease progression following vaccination or infection. In total, 69 publications were reviewed. Sixty-six article reports, representing more than 300 patients across multiple countries and cancer types; 2 retrospective investigations; and one longitudinal study spanning the pre-pandemic through post-pandemic periods. The review explores how immune responses triggered by infection or vaccination could, in some individuals, influence existing cancer cells or previously dormant disease. Many article reports involved blood cancers such as lymphomas and leukemias and solid tumors, including breast, lung, pancreatic, brain, and skin cancers. Some cases described rapid disease progression or cancers appearing near vaccine injection sites or nearby lymph nodes. These observations are described as hypothesis-generating rather than evidence of risk. In addition to individual case reports, the review examines findings from large population studies in South Korea, Italy, and the United States military. These studies assessed cancer trends over time in vaccinated populations and reported modest associations for certain cancer types. The authors note that these findings are limited by short follow-up periods and potential reporting and detection biases, emphasizing the need for longer-term data. The authors also discuss possible biological explanations for the reported patterns, including temporary immune changes, inflammation, or altered immune surveillance that could affect tumor behavior in people with undetected or controlled cancer. They place these observations within the broader context of how viral infections can interact with cancer biology. “Establishing causality between SARS-CoV-2 infection, COVID-19 vaccination, and cancer requires a level of evidence far beyond temporal association.” Overall, the review identifies significant gaps in current knowledge about possible associations between COVID-19 vaccination and cancer, including limited long-term cancer surveillance, lack of molecular data, and an incomplete understanding of individual susceptibility. The authors emphasize the need for carefully designed studies that integrate clinical, epidemiologic, and biological evidence. Finally, they conclude that examining these reported patterns is important for advancing cancer research and supporting informed public health discussions. DOI - https://doi.org/10.18632/oncotarget.28824 Correspondence to - Charlotte Kuperwasser - charlotte.kuperwasser@tufts.edu, and Wafik S. El-Deiry - wafik@brown.edu Abstract video - https://www.youtube.com/watch?v=5_-AaojOoR8 To learn more about Oncotarget, please visit https://www.oncotarget.com. MEDIA@IMPACTJOURNALS.COM
Show more...
Science
RSS
All content for Oncotarget is the property of Oncotarget Podcast and is served directly from their servers with no modification, redirects, or rehosting. The podcast is not affiliated with or endorsed by Podjoint in any way.
BUFFALO, NY – January 8, 2026 – A new #review was #published in Oncotarget (Volume 17) on January 3, 2026, titled “COVID vaccination and post-infection cancer signals: Evaluating patterns and potential biological mechanisms.” Led by Charlotte Kuperwasser from Tufts University School of Medicine and Oncotarget Editor-in-Chief Wafik S. El-Deiry from The Warren Alpert Medical School of Brown University, the review examines published reports describing cancers that appeared after COVID-19 vaccination or SARS-CoV-2 infection. The authors analyze patterns across case reports, small patient series, and large population studies, and explain why these observations are relevant for cancer research and long-term public health monitoring. Cancer remains a major global health concern, and understanding factors that may influence its behavior is important. The review covers reports published between January 2020 and October 2025 that describe cancer diagnoses, recurrence, or unusually rapid disease progression following vaccination or infection. In total, 69 publications were reviewed. Sixty-six article reports, representing more than 300 patients across multiple countries and cancer types; 2 retrospective investigations; and one longitudinal study spanning the pre-pandemic through post-pandemic periods. The review explores how immune responses triggered by infection or vaccination could, in some individuals, influence existing cancer cells or previously dormant disease. Many article reports involved blood cancers such as lymphomas and leukemias and solid tumors, including breast, lung, pancreatic, brain, and skin cancers. Some cases described rapid disease progression or cancers appearing near vaccine injection sites or nearby lymph nodes. These observations are described as hypothesis-generating rather than evidence of risk. In addition to individual case reports, the review examines findings from large population studies in South Korea, Italy, and the United States military. These studies assessed cancer trends over time in vaccinated populations and reported modest associations for certain cancer types. The authors note that these findings are limited by short follow-up periods and potential reporting and detection biases, emphasizing the need for longer-term data. The authors also discuss possible biological explanations for the reported patterns, including temporary immune changes, inflammation, or altered immune surveillance that could affect tumor behavior in people with undetected or controlled cancer. They place these observations within the broader context of how viral infections can interact with cancer biology. “Establishing causality between SARS-CoV-2 infection, COVID-19 vaccination, and cancer requires a level of evidence far beyond temporal association.” Overall, the review identifies significant gaps in current knowledge about possible associations between COVID-19 vaccination and cancer, including limited long-term cancer surveillance, lack of molecular data, and an incomplete understanding of individual susceptibility. The authors emphasize the need for carefully designed studies that integrate clinical, epidemiologic, and biological evidence. Finally, they conclude that examining these reported patterns is important for advancing cancer research and supporting informed public health discussions. DOI - https://doi.org/10.18632/oncotarget.28824 Correspondence to - Charlotte Kuperwasser - charlotte.kuperwasser@tufts.edu, and Wafik S. El-Deiry - wafik@brown.edu Abstract video - https://www.youtube.com/watch?v=5_-AaojOoR8 To learn more about Oncotarget, please visit https://www.oncotarget.com. MEDIA@IMPACTJOURNALS.COM
Show more...
Science
https://i1.sndcdn.com/artworks-HkRMxJs6UQGKwQNF-lqzVkw-t3000x3000.png
Probiotic Bifidobacterium May Boost Cancer Treatment and Suppress Tumors
Oncotarget
3 minutes 29 seconds
1 month ago
Probiotic Bifidobacterium May Boost Cancer Treatment and Suppress Tumors
BUFFALO, NY – November 18, 2025 – A new #review was #published in Oncotarget (Volume 16) on November 14, 2025, titled “Mechanism of anticancer action of bifidobacterium: Insights from gut microbiota.” This review, led by first author Hoang Do and correspondent author Ashakumary Lakshmikuttyamma from Thomas Jefferson University, explores how bifidobacterium, a common probiotic found in the gut, may contribute to cancer prevention and therapy. By analyzing existing studies, the authors highlight the growing importance of gut health in cancer treatment and shed light on how bifidobacterium could complement standard cancer therapies. Bifidobacterium is widely known for promoting digestive health and is often included in fermented foods and dietary supplements. However, emerging evidence suggests it may also play a broader role in immune regulation and cancer defense. The review explains how certain strains of bifidobacterium may enhance the effectiveness of chemotherapy, radiation, and immunotherapy in cancers such as breast, lung, colorectal, and gastric cancers. According to the review, bifidobacterium influences cancer outcomes through several biological mechanisms. It helps regulate immune function by reducing inflammation and supporting the activity of immune cells that target tumors. For instance, strains like B. longum and B. breve have been shown to lower levels of harmful inflammatory markers and boost anti-inflammatory responses. These changes can make cancer treatments more effective while also reducing side effects. “Presence of Bifidobacterium breve in gut microbiota extended the median progression-free survival of NSCLC patients.” The review also discusses how bifidobacterium helps detoxify the body by breaking down cancer-causing compounds and limiting their ability to damage cells. In preclinical studies, the probiotic reduced the activity of enzymes that produce carcinogens and helped in converting food-based substances into cancer-fighting agents. Some strains were even found to suppress genes that promote tumor growth and increase molecules that trigger cancer cell death. The authors emphasize that diet plays a critical role in supporting the growth of bifidobacterium. Foods rich in dietary fiber, especially those containing inulin and oligosaccharides like garlic, onions, or leeks, can help increase its levels in the gut. This suggests that simple dietary changes could not only improve gut health but also support cancer prevention and treatment strategies. Although the review presents compelling evidence, the authors stress the need for more clinical trials to determine how different strains of bifidobacterium affect specific types of cancer. Personalized approaches may be necessary to match the right probiotic strains with individual treatment plans. As research continues to uncover the link between gut microbes and cancer, bifidobacterium stands out as a promising natural ally that could enhance the body’s defenses and improve cancer treatment outcomes. DOI - https://doi.org/10.18632/oncotarget.28779 Correspondence to - Ashakumary Lakshmikuttyamma - axl025@jefferson.edu Abstract video - https://www.youtube.com/watch?v=KTWJDAN15lY Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28779 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Spotify - https://open.spotify.com/show/0gRwT6BqYWJzxzmjPJwtVh MEDIA@IMPACTJOURNALS.COM
Oncotarget
BUFFALO, NY – January 8, 2026 – A new #review was #published in Oncotarget (Volume 17) on January 3, 2026, titled “COVID vaccination and post-infection cancer signals: Evaluating patterns and potential biological mechanisms.” Led by Charlotte Kuperwasser from Tufts University School of Medicine and Oncotarget Editor-in-Chief Wafik S. El-Deiry from The Warren Alpert Medical School of Brown University, the review examines published reports describing cancers that appeared after COVID-19 vaccination or SARS-CoV-2 infection. The authors analyze patterns across case reports, small patient series, and large population studies, and explain why these observations are relevant for cancer research and long-term public health monitoring. Cancer remains a major global health concern, and understanding factors that may influence its behavior is important. The review covers reports published between January 2020 and October 2025 that describe cancer diagnoses, recurrence, or unusually rapid disease progression following vaccination or infection. In total, 69 publications were reviewed. Sixty-six article reports, representing more than 300 patients across multiple countries and cancer types; 2 retrospective investigations; and one longitudinal study spanning the pre-pandemic through post-pandemic periods. The review explores how immune responses triggered by infection or vaccination could, in some individuals, influence existing cancer cells or previously dormant disease. Many article reports involved blood cancers such as lymphomas and leukemias and solid tumors, including breast, lung, pancreatic, brain, and skin cancers. Some cases described rapid disease progression or cancers appearing near vaccine injection sites or nearby lymph nodes. These observations are described as hypothesis-generating rather than evidence of risk. In addition to individual case reports, the review examines findings from large population studies in South Korea, Italy, and the United States military. These studies assessed cancer trends over time in vaccinated populations and reported modest associations for certain cancer types. The authors note that these findings are limited by short follow-up periods and potential reporting and detection biases, emphasizing the need for longer-term data. The authors also discuss possible biological explanations for the reported patterns, including temporary immune changes, inflammation, or altered immune surveillance that could affect tumor behavior in people with undetected or controlled cancer. They place these observations within the broader context of how viral infections can interact with cancer biology. “Establishing causality between SARS-CoV-2 infection, COVID-19 vaccination, and cancer requires a level of evidence far beyond temporal association.” Overall, the review identifies significant gaps in current knowledge about possible associations between COVID-19 vaccination and cancer, including limited long-term cancer surveillance, lack of molecular data, and an incomplete understanding of individual susceptibility. The authors emphasize the need for carefully designed studies that integrate clinical, epidemiologic, and biological evidence. Finally, they conclude that examining these reported patterns is important for advancing cancer research and supporting informed public health discussions. DOI - https://doi.org/10.18632/oncotarget.28824 Correspondence to - Charlotte Kuperwasser - charlotte.kuperwasser@tufts.edu, and Wafik S. El-Deiry - wafik@brown.edu Abstract video - https://www.youtube.com/watch?v=5_-AaojOoR8 To learn more about Oncotarget, please visit https://www.oncotarget.com. MEDIA@IMPACTJOURNALS.COM